Complete bipartite graphs without small rainbow subgraphs

被引:0
|
作者
Ma, Zhiqiang [1 ]
Mao, Yaping [2 ]
Schiermeyer, Ingo [3 ]
Wei, Meiqin [4 ]
机构
[1] Qinghai Normal Univ, Sch Math & Statistis, Xining 810008, Qinghai, Peoples R China
[2] Qinghai Normal Univ, Acad Plateau Sci & Sustainabil, Xining 810008, Qinghai, Peoples R China
[3] Tech Univ, Inst Diskrete Math & Algebra, Bergakad Freiberg, D-09596 Freiberg, Germany
[4] Shanghai Maritime Univ, Coll Arts & Sci, Shanghai 201306, Peoples R China
基金
中国国家自然科学基金;
关键词
Ramsey theory; Matching; Bipartite Gallai-Ramsey number; Bipartite graph; RAMSEY NUMBERS;
D O I
10.1016/j.dam.2023.12.020
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Motivated by bipartite Gallai-Ramsey type problems, we consider edge-colorings of complete bipartite graphs without rainbow tree and matching. Given two graphs G and H, and a positive integer k, define the bipartite Gallai-Ramsey number bgr(k)(G : H) as the minimum number of vertices n such that n(2) >= k and for every N >= n, any coloring (using all k colors) of the complete bipartite graph KN,N contains a rainbow copy of G or a monochromatic copy of H. In this paper, we first describe the structures of a complete bipartite graph K-n,K-n without rainbow P-4(+) and 3K(2), respectively, where P-4(+) is the graph consisting of a P-4 with one extra edge incident with an interior vertex. Furthermore, we determine the exact values or upper and lower bounds on bgr(k)(G : H) when G is a 3-matching or a 4-path or P-4(+), and H is a bipartite graph. (c) 2023 Elsevier B.V. All rights reserved.
引用
收藏
页码:248 / 262
页数:15
相关论文
共 50 条
  • [1] Complete bipartite graphs without small rainbow stars
    Chen, Weizhen
    Ji, Meng
    Mao, Yaping
    Wei, Meiqin
    DISCRETE APPLIED MATHEMATICS, 2023, 340 : 14 - 20
  • [2] Complete graphs and complete bipartite graphs without rainbow path
    Li, Xihe
    Wang, Ligong
    Liu, Xiangxiang
    DISCRETE MATHEMATICS, 2019, 342 (07) : 2116 - 2126
  • [3] On covering graphs by complete bipartite subgraphs
    Jukna, S.
    Kulikov, A. S.
    DISCRETE MATHEMATICS, 2009, 309 (10) : 3399 - 3403
  • [4] ON RAMSEY GRAPHS WITHOUT BIPARTITE SUBGRAPHS
    NESETRIL, J
    RODL, V
    DISCRETE MATHEMATICS, 1992, 101 (1-3) : 223 - 229
  • [5] OPTIMAL ORIENTATIONS OF SUBGRAPHS OF COMPLETE BIPARTITE GRAPHS
    Lakshmi, R.
    Rajasekaran, G.
    Sampathkumar, R.
    TRANSACTIONS ON COMBINATORICS, 2015, 4 (01) : 19 - 29
  • [6] DECOMPOSITION OF PRODUCT GRAPHS INTO COMPLETE BIPARTITE SUBGRAPHS
    REZNICK, B
    TIWARI, P
    WEST, DB
    DISCRETE MATHEMATICS, 1985, 57 (1-2) : 189 - 193
  • [7] Covering graphs with few complete bipartite subgraphs
    Fleischner, Herbert
    Mujuni, Egbert
    Paulusma, Daniel
    Szeider, Stefan
    FSTTCS 2007: FOUNDATIONS OF SOFTWARE TECHNOLOGY AND THEORETICAL COMPUTER SCIENCE, PROCEEDINGS, 2007, 4855 : 340 - +
  • [8] EIGENSHARP GRAPHS - DECOMPOSITION INTO COMPLETE BIPARTITE SUBGRAPHS
    KRATZKE, T
    REZNICK, B
    WEST, D
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1988, 308 (02) : 637 - 653
  • [9] DECOMPOSITIONS OF COMPLETE GRAPHS INTO ISOMORPHIC BIPARTITE SUBGRAPHS
    BALAKRISHNAN, R
    KUMAR, RS
    GRAPHS AND COMBINATORICS, 1994, 10 (01) : 19 - 25
  • [10] Covering graphs with few complete bipartite subgraphs
    Fleischner, Herbert
    Mujuni, Egbert
    Paulusma, Daniel
    Szieder, Stefan
    THEORETICAL COMPUTER SCIENCE, 2009, 410 (21-23) : 2045 - 2053