Complete bipartite graphs without small rainbow subgraphs

被引:0
|
作者
Ma, Zhiqiang [1 ]
Mao, Yaping [2 ]
Schiermeyer, Ingo [3 ]
Wei, Meiqin [4 ]
机构
[1] Qinghai Normal Univ, Sch Math & Statistis, Xining 810008, Qinghai, Peoples R China
[2] Qinghai Normal Univ, Acad Plateau Sci & Sustainabil, Xining 810008, Qinghai, Peoples R China
[3] Tech Univ, Inst Diskrete Math & Algebra, Bergakad Freiberg, D-09596 Freiberg, Germany
[4] Shanghai Maritime Univ, Coll Arts & Sci, Shanghai 201306, Peoples R China
基金
中国国家自然科学基金;
关键词
Ramsey theory; Matching; Bipartite Gallai-Ramsey number; Bipartite graph; RAMSEY NUMBERS;
D O I
10.1016/j.dam.2023.12.020
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Motivated by bipartite Gallai-Ramsey type problems, we consider edge-colorings of complete bipartite graphs without rainbow tree and matching. Given two graphs G and H, and a positive integer k, define the bipartite Gallai-Ramsey number bgr(k)(G : H) as the minimum number of vertices n such that n(2) >= k and for every N >= n, any coloring (using all k colors) of the complete bipartite graph KN,N contains a rainbow copy of G or a monochromatic copy of H. In this paper, we first describe the structures of a complete bipartite graph K-n,K-n without rainbow P-4(+) and 3K(2), respectively, where P-4(+) is the graph consisting of a P-4 with one extra edge incident with an interior vertex. Furthermore, we determine the exact values or upper and lower bounds on bgr(k)(G : H) when G is a 3-matching or a 4-path or P-4(+), and H is a bipartite graph. (c) 2023 Elsevier B.V. All rights reserved.
引用
收藏
页码:248 / 262
页数:15
相关论文
共 50 条
  • [31] Anti-Ramsey Problems in Complete Bipartite Graphs for t Edge-Disjoint Rainbow Spanning Subgraphs: Cycles and Matchings
    Yuxing Jia
    Mei Lu
    Yi Zhang
    Graphs and Combinatorics, 2019, 35 : 1011 - 1021
  • [32] COVERING OF GRAPHS BY COMPLETE BIPARTITE SUBGRAPHS - COMPLEXITY OF 0-1-MATRICES
    TUZA, Z
    COMBINATORICA, 1984, 4 (01) : 111 - 116
  • [33] A DECOMPOSITION OF COMPLETE BIPARTITE GRAPHS INTO EDGE-DISJOINT SUBGRAPHS WITH STAR COMPONENTS
    EGAWA, Y
    URABE, M
    FUKUDA, T
    NAGOYA, S
    DISCRETE MATHEMATICS, 1986, 58 (01) : 93 - 95
  • [34] Colouring graphs with forbidden bipartite subgraphs
    Anderson, James
    Bernshteyn, Anton
    Dhawan, Abhishek
    COMBINATORICS PROBABILITY & COMPUTING, 2023, 32 (01): : 45 - 67
  • [35] Efficient Enumeration of Bipartite Subgraphs in Graphs
    Wasa, Kunihiro
    Uno, Takeaki
    COMPUTING AND COMBINATORICS (COCOON 2018), 2018, 10976 : 454 - 466
  • [36] Bipartite subgraphs of integer weighted graphs
    Alon, N
    Halperin, E
    DISCRETE MATHEMATICS, 1998, 181 (1-3) : 19 - 29
  • [37] Decomposition of bipartite graphs into special subgraphs
    Chen, Guantao
    Schelp, Richard H.
    DISCRETE APPLIED MATHEMATICS, 2007, 155 (03) : 400 - 404
  • [38] MAXIMUM BIPARTITE SUBGRAPHS OF KNESER GRAPHS
    POLJAK, S
    TUZA, Z
    GRAPHS AND COMBINATORICS, 1987, 3 (02) : 191 - 199
  • [39] Large homogeneous subgraphs in bipartite graphs with forbidden induced subgraphs
    Axenovich, Maria
    Tompkins, Casey
    Weber, Lea
    JOURNAL OF GRAPH THEORY, 2021, 97 (01) : 34 - 46
  • [40] Complete bipartite factorisations by complete bipartite graphs
    Martin, N
    DISCRETE MATHEMATICS, 1997, 167 : 461 - 480