Decomposition of bipartite graphs into special subgraphs

被引:0
|
作者
Chen, Guantao [1 ]
Schelp, Richard H.
机构
[1] Georgia State Univ, Dept Math & Stat, Atlanta, GA 30303 USA
[2] Cent China Normal Univ, Fac Math & Stat, Wuhan 430079, Peoples R China
[3] Memphis State Univ, Dept Math Sci, Memphis, TN 38152 USA
关键词
factorization; orthogonal; complete bipartite graphs;
D O I
10.1016/j.dam.2006.06.011
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let F and G be two graphs and let H be a subgraph of G. A decomposition of G into subgraphs F-1. F-2.....F-m is called an F-factorization of G orthogonal to H if Fi congruent to F and vertical bar E(F-i boolean AND H)vertical bar = 1 for each i = 1.2.....m. Gyarfas and Schelp conjectured that the complete bipartite graph K-4k,K-4k has a C-4-factorization orthogonal to H provided that H is a k-factor of K-4k.4k. In this paper, we show that (1) the conjecture is true when H satisfies some structural conditions: (2) for any two positive integers r >= k, K-kr2.kr.2 has a K-r.r-factorization orthogonal to H if H is a k-factor of K-kr2.kr2; (3) K-2d2.(2d2) has a C-4-factorization such that each edge of H belongs to a different C-4 if H is a subgraph of K-2d2.2d2 with maximum degree Delta(H)<= d. (c) 2006 Elsevier B.V. All rights reserved.
引用
下载
收藏
页码:400 / 404
页数:5
相关论文
共 50 条
  • [1] EIGENSHARP GRAPHS - DECOMPOSITION INTO COMPLETE BIPARTITE SUBGRAPHS
    KRATZKE, T
    REZNICK, B
    WEST, D
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1988, 308 (02) : 637 - 653
  • [2] DECOMPOSITION OF PRODUCT GRAPHS INTO COMPLETE BIPARTITE SUBGRAPHS
    REZNICK, B
    TIWARI, P
    WEST, DB
    DISCRETE MATHEMATICS, 1985, 57 (1-2) : 189 - 193
  • [3] Colouring graphs with forbidden bipartite subgraphs
    Anderson, James
    Bernshteyn, Anton
    Dhawan, Abhishek
    COMBINATORICS PROBABILITY & COMPUTING, 2023, 32 (01): : 45 - 67
  • [4] Efficient Enumeration of Bipartite Subgraphs in Graphs
    Wasa, Kunihiro
    Uno, Takeaki
    COMPUTING AND COMBINATORICS (COCOON 2018), 2018, 10976 : 454 - 466
  • [5] A DECOMPOSITION OF COMPLETE BIPARTITE GRAPHS INTO EDGE-DISJOINT SUBGRAPHS WITH STAR COMPONENTS
    EGAWA, Y
    URABE, M
    FUKUDA, T
    NAGOYA, S
    DISCRETE MATHEMATICS, 1986, 58 (01) : 93 - 95
  • [6] Bipartite subgraphs of integer weighted graphs
    Alon, N
    Halperin, E
    DISCRETE MATHEMATICS, 1998, 181 (1-3) : 19 - 29
  • [7] ON RAMSEY GRAPHS WITHOUT BIPARTITE SUBGRAPHS
    NESETRIL, J
    RODL, V
    DISCRETE MATHEMATICS, 1992, 101 (1-3) : 223 - 229
  • [8] On covering graphs by complete bipartite subgraphs
    Jukna, S.
    Kulikov, A. S.
    DISCRETE MATHEMATICS, 2009, 309 (10) : 3399 - 3403
  • [9] MAXIMUM BIPARTITE SUBGRAPHS OF KNESER GRAPHS
    POLJAK, S
    TUZA, Z
    GRAPHS AND COMBINATORICS, 1987, 3 (02) : 191 - 199
  • [10] Large homogeneous subgraphs in bipartite graphs with forbidden induced subgraphs
    Axenovich, Maria
    Tompkins, Casey
    Weber, Lea
    JOURNAL OF GRAPH THEORY, 2021, 97 (01) : 34 - 46