Decomposition of bipartite graphs into special subgraphs

被引:0
|
作者
Chen, Guantao [1 ]
Schelp, Richard H.
机构
[1] Georgia State Univ, Dept Math & Stat, Atlanta, GA 30303 USA
[2] Cent China Normal Univ, Fac Math & Stat, Wuhan 430079, Peoples R China
[3] Memphis State Univ, Dept Math Sci, Memphis, TN 38152 USA
关键词
factorization; orthogonal; complete bipartite graphs;
D O I
10.1016/j.dam.2006.06.011
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let F and G be two graphs and let H be a subgraph of G. A decomposition of G into subgraphs F-1. F-2.....F-m is called an F-factorization of G orthogonal to H if Fi congruent to F and vertical bar E(F-i boolean AND H)vertical bar = 1 for each i = 1.2.....m. Gyarfas and Schelp conjectured that the complete bipartite graph K-4k,K-4k has a C-4-factorization orthogonal to H provided that H is a k-factor of K-4k.4k. In this paper, we show that (1) the conjecture is true when H satisfies some structural conditions: (2) for any two positive integers r >= k, K-kr2.kr.2 has a K-r.r-factorization orthogonal to H if H is a k-factor of K-kr2.kr2; (3) K-2d2.(2d2) has a C-4-factorization such that each edge of H belongs to a different C-4 if H is a subgraph of K-2d2.2d2 with maximum degree Delta(H)<= d. (c) 2006 Elsevier B.V. All rights reserved.
引用
收藏
页码:400 / 404
页数:5
相关论文
共 50 条
  • [21] BIPARTITE SUBGRAPHS OF TRIANGLE-FREE GRAPHS
    POLJAK, S
    TUZA, Z
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 1994, 7 (02) : 307 - 313
  • [22] On bipartite graphs with weak density of some subgraphs
    Fouquet, Jean-Luc
    Vanherpe, Jean-Marie
    DISCRETE MATHEMATICS, 2007, 307 (11-12) : 1516 - 1524
  • [23] Covering graphs with few complete bipartite subgraphs
    Fleischner, Herbert
    Mujuni, Egbert
    Paulusma, Daniel
    Szieder, Stefan
    THEORETICAL COMPUTER SCIENCE, 2009, 410 (21-23) : 2045 - 2053
  • [24] Bipartite Subgraphs of Graphs with Maximum Degree Three
    Stanisław Bylka
    Adam Idzik
    Jan Komar
    Graphs and Combinatorics, 1999, 15 : 129 - 136
  • [25] On the decomposition of graphs into complete bipartite graphs
    Dong, Jinquan
    Liu, Yanpei
    GRAPHS AND COMBINATORICS, 2007, 23 (03) : 255 - 262
  • [26] On the Decomposition of Graphs into Complete Bipartite Graphs
    Jinquan Dong
    Yanpei Liu
    Graphs and Combinatorics, 2007, 23 : 255 - 262
  • [27] MAXIMUM WEIGHTED INDUCED BIPARTITE SUBGRAPHS AND ACYCLIC SUBGRAPHS OF PLANAR CUBIC GRAPHS
    Baiou, Mourad
    Barahona, Francisco
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2016, 30 (02) : 1290 - 1301
  • [28] A NOTE ON BIPARTITE SUBGRAPHS OF TRIANGLE-FREE GRAPHS
    SHEARER, JB
    RANDOM STRUCTURES & ALGORITHMS, 1992, 3 (02) : 223 - 226
  • [29] Perfect matchings in random subgraphs of regular bipartite graphs
    Glebov, Roman
    Luria, Zur
    Simkin, Michael
    JOURNAL OF GRAPH THEORY, 2021, 97 (02) : 208 - 231
  • [30] COMPLETE SUBGRAPHS OF BIPARTITE GRAPHS AND APPLICATIONS TO TRACE LANGUAGES
    GUAIANA, G
    RESTIVO, A
    SALEMI, S
    RAIRO-INFORMATIQUE THEORIQUE ET APPLICATIONS-THEORETICAL INFORMATICS AND APPLICATIONS, 1990, 24 (04): : 409 - 417