Partitioning the vertex set of a bipartite graph into complete bipartite subgraphs

被引:0
|
作者
Duginov, Oleg [1 ]
机构
[1] Natl Acad Sci, Inst Math, Dept Combinatorial Models & Algorithms, Minsk, BELARUS
关键词
bicliques; bipartite graph; computational complexity; partitioning problem;
D O I
暂无
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Given a graph and a positive integer k, the biclique vertex-partition problem asks whether the vertex set of the graph can be partitioned into at most k bicliques (connected complete bipartite subgraphs). It is known that this problem is NP-complete for bipartite graphs. In this paper we investigate the computational complexity of this problem in special subclasses of bipartite graphs. We prove that the biclique vertex-partition problem is polynomially solvable for bipartite permutation graphs, bipartite distance-hereditary graphs; and that it remains NP-complete for perfect elimination bipartite graphs and bipartite graphs containing no 4-cycles as induced subgraphs.
引用
收藏
页码:203 / 214
页数:12
相关论文
共 50 条
  • [31] On the Set of Stable Matchings in a Bipartite Graph
    A. V. Karzanov
    Computational Mathematics and Mathematical Physics, 2023, 63 : 1540 - 1556
  • [32] Cluttered orderings for the complete bipartite graph
    Müller, M
    Adachi, T
    Jimbo, M
    DISCRETE APPLIED MATHEMATICS, 2005, 152 (1-3) : 213 - 228
  • [33] ON PLANAR DECOMPOSITION OF A COMPLETE BIPARTITE GRAPH
    SHIRAKAW.I
    TAKAHASH.H
    OZAKI, H
    ELECTRONICS & COMMUNICATIONS IN JAPAN, 1967, 50 (10): : 288 - &
  • [34] Quantum counting on the complete bipartite graph
    Bezerra, Gustavo A.
    Santos, Raqueline A. M.
    Portugal, Renato
    INTERNATIONAL JOURNAL OF QUANTUM INFORMATION, 2024,
  • [35] CHROMATIC POLYNOMIAL OF A COMPLETE BIPARTITE GRAPH
    SWENSWEN.JR
    AMERICAN MATHEMATICAL MONTHLY, 1973, 80 (07): : 797 - 798
  • [36] On paths in a complete bipartite geometric graph
    Kaneko, A
    Kano, M
    DISCRETE AND COMPUTATIONAL GEOMETRY, 2001, 2098 : 187 - 191
  • [37] ON PLANAR DECOMPOSITION OF A COMPLETE BIPARTITE GRAPH
    SHIRAKAW.I
    TAKAHASH.H
    OZAKI, H
    SIAM JOURNAL ON APPLIED MATHEMATICS, 1968, 16 (02) : 408 - &
  • [38] Covering a graph by complete bipartite graphs
    Erdos, P
    Pyber, L
    DISCRETE MATHEMATICS, 1997, 170 (1-3) : 249 - 251
  • [39] ON MAXIMUM BIPARTITE SUBGRAPHS
    MALLE, G
    JOURNAL OF GRAPH THEORY, 1982, 6 (02) : 105 - 113
  • [40] On set colorings of complete bipartite graphs
    Grueter, Steffen
    Holtkamp, Andreas
    Surmacst, Michel
    AUSTRALASIAN JOURNAL OF COMBINATORICS, 2011, 49 : 245 - 253