Partitioning the vertex set of a bipartite graph into complete bipartite subgraphs

被引:0
|
作者
Duginov, Oleg [1 ]
机构
[1] Natl Acad Sci, Inst Math, Dept Combinatorial Models & Algorithms, Minsk, BELARUS
关键词
bicliques; bipartite graph; computational complexity; partitioning problem;
D O I
暂无
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Given a graph and a positive integer k, the biclique vertex-partition problem asks whether the vertex set of the graph can be partitioned into at most k bicliques (connected complete bipartite subgraphs). It is known that this problem is NP-complete for bipartite graphs. In this paper we investigate the computational complexity of this problem in special subclasses of bipartite graphs. We prove that the biclique vertex-partition problem is polynomially solvable for bipartite permutation graphs, bipartite distance-hereditary graphs; and that it remains NP-complete for perfect elimination bipartite graphs and bipartite graphs containing no 4-cycles as induced subgraphs.
引用
收藏
页码:203 / 214
页数:12
相关论文
共 50 条
  • [11] EIGENSHARP GRAPHS - DECOMPOSITION INTO COMPLETE BIPARTITE SUBGRAPHS
    KRATZKE, T
    REZNICK, B
    WEST, D
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1988, 308 (02) : 637 - 653
  • [12] DECOMPOSITIONS OF COMPLETE GRAPHS INTO ISOMORPHIC BIPARTITE SUBGRAPHS
    BALAKRISHNAN, R
    KUMAR, RS
    GRAPHS AND COMBINATORICS, 1994, 10 (01) : 19 - 25
  • [13] Covering graphs with few complete bipartite subgraphs
    Fleischner, Herbert
    Mujuni, Egbert
    Paulusma, Daniel
    Szieder, Stefan
    THEORETICAL COMPUTER SCIENCE, 2009, 410 (21-23) : 2045 - 2053
  • [14] ON THICKNESS OF COMPLETE BIPARTITE GRAPH
    BEINEKE, LW
    MOON, JW
    HARARY, F
    PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1964, 60 (01): : 1 - &
  • [15] COARSENESS OF COMPLETE BIPARTITE GRAPH
    BEINEKE, LW
    GUY, RK
    CANADIAN JOURNAL OF MATHEMATICS, 1969, 21 (05): : 1086 - &
  • [16] Bipartite subgraphs
    Alon, N
    COMBINATORICA, 1996, 16 (03) : 301 - 311
  • [17] Tradeoff Options for Bipartite Graph Partitioning
    Mackenzie, Joel
    Petri, Matthias
    Moffat, Alistair
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2023, 35 (08) : 8644 - 8657
  • [18] Preserving patterns in bipartite graph partitioning
    Hu, Tianming
    Qu, Chao
    Tan, Chew Lim
    Sung, Sam Yuan
    Zhou, Wenjun
    ICTAI-2006: EIGHTEENTH INTERNATIONAL CONFERENCE ON TOOLS WITH ARTIFICIAL INTELLIGENCE, PROCEEDINGS, 2006, : 489 - 496
  • [19] The Bipartite-Cylindrical Crossing Number of the Complete Bipartite Graph
    Bernardo Ábrego
    Silvia Fernández-Merchant
    Athena Sparks
    Graphs and Combinatorics, 2020, 36 : 205 - 220
  • [20] The Bipartite-Cylindrical Crossing Number of the Complete Bipartite Graph
    Abrego, Bernardo
    Fernandez-Merchant, Silvia
    Sparks, Athena
    GRAPHS AND COMBINATORICS, 2020, 36 (02) : 205 - 220