On the Equitable Vertex Arboricity of Complete Bipartite Graphs

被引:0
|
作者
Mao, Yaping [1 ]
Guo, Zhiwei [1 ]
Zhao, Haixing [2 ]
Ye, Chengfu [1 ]
机构
[1] Qinghai Normal Univ, Dept Math, Xining 810008, Qinghai, Peoples R China
[2] Qinghai Normal Univ, Sch Comp, Xining 810008, Qinghai, Peoples R China
基金
美国国家科学基金会;
关键词
Equitable coloring; vertex k-arboricity; k-tree-coloring; complete bipartite graph;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The equitable coloring problem, introduced by Meyer in 1973, has received considerable attention and research. Recently, Wu, Zhang and Li introduced the concept of equitable (t, k)-tree-coloring, which can be viewed as a generalization of proper equitable t-coloring. The strong equitable vertex k-arboricity of complete equipartition bipartite graphs was investigated by Wu, Zhang and Li. in 2013. In this paper, we give some upper bounds of the strong equitable vertex 1-arboricity of complete non-equipartition bipartite graphs.
引用
收藏
页码:403 / 411
页数:9
相关论文
共 50 条
  • [1] On the Strong Equitable Vertex 2-Arboricity of Complete Bipartite Graphs
    Tao, Fangyun
    Jin, Ting
    Tu, Yiyou
    [J]. MATHEMATICS, 2020, 8 (10) : 1 - 6
  • [2] The strong equitable vertex 2-arboricity of complete bipartite and tripartite graphs
    Nakprasit, Keaitsuda Maneeruk
    Nakprasit, Kittikorn
    [J]. INFORMATION PROCESSING LETTERS, 2017, 117 : 40 - 44
  • [3] The equitable vertex arboricity of complete tripartite graphs
    Guo, Zhiwei
    Zhao, Haixing
    Mao, Yaping
    [J]. INFORMATION PROCESSING LETTERS, 2015, 115 (12) : 977 - 982
  • [4] On the equitable vertex arboricity of complete tripartite graphs
    Guo, Zhiwei
    Zhao, Haixing
    Mao, Yaping
    [J]. DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2015, 7 (04)
  • [5] The Strong Equitable Vertex 1-Arboricity of Complete Bipartite Graphs and Balanced Complete k-Partite Graphs
    Laomala, Janejira
    Nakprasit, Keaitsuda Maneeruk
    Nakprasit, Kittikorn
    Ruksasakchai, Watcharintorn
    [J]. SYMMETRY-BASEL, 2022, 14 (02):
  • [6] Equitable vertex arboricity of graphs
    Wu, Jian-Liang
    Zhang, Xin
    Li, Hailuan
    [J]. DISCRETE MATHEMATICS, 2013, 313 (23) : 2696 - 2701
  • [7] On the equitable vertex arboricity of graphs
    Tao, Fangyun
    Lin, Wensong
    [J]. INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2016, 93 (06) : 844 - 853
  • [8] A Conjecture on Equitable Vertex Arboricity of Graphs
    Zhang, Xin
    Wu, Jian-Liang
    [J]. FILOMAT, 2014, 28 (01) : 217 - 219
  • [9] Equitable vertex arboricity of subcubic graphs
    Zhang, Xin
    [J]. DISCRETE MATHEMATICS, 2016, 339 (06) : 1724 - 1726
  • [10] EQUITABLE VERTEX ARBORICITY OF PLANAR GRAPHS
    Zhang, Xin
    [J]. TAIWANESE JOURNAL OF MATHEMATICS, 2015, 19 (01): : 123 - 131