Measurement bias and effect restoration in causal inference

被引:117
|
作者
Kuroki, Manabu [1 ]
Pearl, Judea [2 ]
机构
[1] Inst Stat Math, Dept Data Sci, Tachikawa, Tokyo 1908562, Japan
[2] Univ Calif Los Angeles, Dept Comp Sci, Los Angeles, CA 90095 USA
基金
美国国家科学基金会; 美国国家卫生研究院;
关键词
Causal diagram; Confounder; Instrumental variable method; Proxy variable; Regression coefficient; Total effect; INSTRUMENTAL VARIABLES; MODELS; MISCLASSIFICATION; ERRORS; BOUNDS;
D O I
10.1093/biomet/ast066
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
This paper highlights several areas where graphical techniques can be harnessed to address the problem of measurement errors in causal inference. In particular, it discusses the control of unmeasured confounders in parametric and nonparametric models and the computational problem of obtaining bias-free effect estimates in such models. We derive new conditions under which causal effects can be restored by observing proxy variables of unmeasured confounders with/without external studies.
引用
收藏
页码:423 / 437
页数:15
相关论文
共 50 条
  • [21] Causal effect estimation and inference using Stata
    Terza, Joseph V.
    [J]. STATA JOURNAL, 2017, 17 (04): : 939 - 961
  • [22] Analyzing Selection Bias for Credible Causal Inference When in Doubt, DAG It Out
    Arah, Onyebuchi A.
    [J]. EPIDEMIOLOGY, 2019, 30 (04) : 517 - 520
  • [23] Causal inference and omitted variable bias in financial aid research: Assessing solutions
    Cellini, Stephanie Riegg
    [J]. REVIEW OF HIGHER EDUCATION, 2008, 31 (03): : 329 - +
  • [24] CAUSAL INFORMATION - DOES IT BIAS THE PERCEPTION OF EFFECT
    SILKA, L
    [J]. PERSONALITY AND SOCIAL PSYCHOLOGY BULLETIN, 1980, 6 (02) : 199 - 199
  • [25] Causal Inference
    Kuang, Kun
    Li, Lian
    Geng, Zhi
    Xu, Lei
    Zhang, Kun
    Liao, Beishui
    Huang, Huaxin
    Ding, Peng
    Miao, Wang
    Jiang, Zhichao
    [J]. ENGINEERING, 2020, 6 (03) : 253 - 263
  • [26] CAUSAL INFERENCE
    ROTHMAN, KJ
    LANES, S
    ROBINS, J
    [J]. EPIDEMIOLOGY, 1993, 4 (06) : 555 - 556
  • [27] Causal inference for psychologists who think that causal inference is not for them
    Rohrer, Julia M.
    [J]. SOCIAL AND PERSONALITY PSYCHOLOGY COMPASS, 2024, 18 (03)
  • [28] Preventive Effect Heterogeneity: Causal Inference in Personalized Prevention
    George W. Howe
    [J]. Prevention Science, 2019, 20 : 21 - 29
  • [29] Statistical Inference on the Estimators of the Adherer Average Causal Effect
    Zhang, Ying
    Fu, Haoda
    Ruberg, Stephen J.
    Qu, Yongming
    [J]. STATISTICS IN BIOPHARMACEUTICAL RESEARCH, 2022, 14 (03): : 392 - 395
  • [30] Goal of causal inference interacts with base rate of effect
    Cheng, PW
    [J]. INTERNATIONAL JOURNAL OF PSYCHOLOGY, 1996, 31 (3-4) : 5424 - 5424