Measurement bias and effect restoration in causal inference

被引:117
|
作者
Kuroki, Manabu [1 ]
Pearl, Judea [2 ]
机构
[1] Inst Stat Math, Dept Data Sci, Tachikawa, Tokyo 1908562, Japan
[2] Univ Calif Los Angeles, Dept Comp Sci, Los Angeles, CA 90095 USA
基金
美国国家科学基金会; 美国国家卫生研究院;
关键词
Causal diagram; Confounder; Instrumental variable method; Proxy variable; Regression coefficient; Total effect; INSTRUMENTAL VARIABLES; MODELS; MISCLASSIFICATION; ERRORS; BOUNDS;
D O I
10.1093/biomet/ast066
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
This paper highlights several areas where graphical techniques can be harnessed to address the problem of measurement errors in causal inference. In particular, it discusses the control of unmeasured confounders in parametric and nonparametric models and the computational problem of obtaining bias-free effect estimates in such models. We derive new conditions under which causal effects can be restored by observing proxy variables of unmeasured confounders with/without external studies.
引用
收藏
页码:423 / 437
页数:15
相关论文
共 50 条
  • [31] Causal inference and effect estimation using observational data
    Igelstrom, Erik
    Craig, Peter
    Lewsey, Jim
    Lynch, John
    Pearce, Anna
    Katikireddi, Srinivasa Vittal
    [J]. JOURNAL OF EPIDEMIOLOGY AND COMMUNITY HEALTH, 2022, 76 (11): : 960 - 966
  • [32] SEMIPARAMETRIC INFERENCE OF CAUSAL EFFECT WITH NONIGNORABLE MISSING CONFOUNDERS
    Sun, Zhaohan
    Liu, Lan
    [J]. STATISTICA SINICA, 2021, 31 (04) : 1669 - 1688
  • [33] Causal Effect Prediction with Flow-based Inference
    Ren, Shaogang
    Li, Dingcheng
    Li, Ping
    [J]. 2022 IEEE INTERNATIONAL CONFERENCE ON DATA MINING (ICDM), 2022, : 1167 - 1172
  • [34] Causal inference framework for generalizable safety effect estimates
    Wood, Jonathan S.
    Donnell, Eric T.
    [J]. ACCIDENT ANALYSIS AND PREVENTION, 2017, 104 : 74 - 87
  • [35] Preventive Effect Heterogeneity: Causal Inference in Personalized Prevention
    Howe, George W.
    [J]. PREVENTION SCIENCE, 2019, 20 (01) : 21 - 29
  • [36] THE EFFECT OF GENETIC SUSCEPTIBILITY ON CAUSAL INFERENCE IN EPIDEMIOLOGIC STUDIES
    KHOURY, MJ
    STEWART, W
    BEATY, TH
    [J]. AMERICAN JOURNAL OF EPIDEMIOLOGY, 1987, 126 (04) : 561 - 567
  • [37] Robust variance estimation and inference for causal effect estimation
    Tran, Linh
    Petersen, Maya
    Schwab, Joshua
    van der Laan, Mark J.
    [J]. JOURNAL OF CAUSAL INFERENCE, 2023, 11 (01)
  • [38] Population Mobility and Urban Air Quality: Causal Inference and Impact Measurement
    Huang, Fu
    Wu, Qiang
    Wang, Pei
    [J]. SUSTAINABILITY, 2023, 15 (15)
  • [39] Causal Inference with Differential Measurement Error: Nonparametric Identification and Sensitivity Analysis
    Imai, Kosuke
    Yamamoto, Teppei
    [J]. AMERICAN JOURNAL OF POLITICAL SCIENCE, 2010, 54 (02) : 543 - 560
  • [40] Word Embeddings via Causal Inference: Gender Bias Reducing and Semantic Information Preserving
    Ding, Lei
    Yu, Dengdeng
    Xie, Jinhan
    Guo, Wenxing
    Hu, Shenggang
    Liu, Meichen
    Kong, Linglong
    Dai, Hongsheng
    Bao, Yanchun
    Jiang, Bei
    [J]. THIRTY-SIXTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE / THIRTY-FOURTH CONFERENCE ON INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE / TWELVETH SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2022, : 11864 - 11872