Measurement bias and effect restoration in causal inference

被引:117
|
作者
Kuroki, Manabu [1 ]
Pearl, Judea [2 ]
机构
[1] Inst Stat Math, Dept Data Sci, Tachikawa, Tokyo 1908562, Japan
[2] Univ Calif Los Angeles, Dept Comp Sci, Los Angeles, CA 90095 USA
基金
美国国家科学基金会; 美国国家卫生研究院;
关键词
Causal diagram; Confounder; Instrumental variable method; Proxy variable; Regression coefficient; Total effect; INSTRUMENTAL VARIABLES; MODELS; MISCLASSIFICATION; ERRORS; BOUNDS;
D O I
10.1093/biomet/ast066
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
This paper highlights several areas where graphical techniques can be harnessed to address the problem of measurement errors in causal inference. In particular, it discusses the control of unmeasured confounders in parametric and nonparametric models and the computational problem of obtaining bias-free effect estimates in such models. We derive new conditions under which causal effects can be restored by observing proxy variables of unmeasured confounders with/without external studies.
引用
收藏
页码:423 / 437
页数:15
相关论文
共 50 条
  • [41] Hate Crime Research: Design and Measurement Strategies for Improving Causal Inference
    Green, Donald P.
    Spry, Amber D.
    [J]. JOURNAL OF CONTEMPORARY CRIMINAL JUSTICE, 2014, 30 (03) : 228 - 246
  • [42] The Causal Effects of Causal Inference Pedagogy
    Swanson, Sonja A. A.
    [J]. EPIDEMIOLOGY, 2023, 34 (05) : 611 - 613
  • [43] NEW G-FORMULA FOR THE SEQUENTIAL CAUSAL EFFECT AND BLIP EFFECT OF TREATMENT IN SEQUENTIAL CAUSAL INFERENCE
    Wang, Xiaoqin
    Yin, Li
    [J]. ANNALS OF STATISTICS, 2020, 48 (01): : 138 - 160
  • [44] Compensation and Amplification of Attenuation Bias in Causal Effect Estimates
    Sengewald, Marie-Ann
    Pohl, Steffi
    [J]. PSYCHOMETRIKA, 2019, 84 (02) : 589 - 610
  • [45] Compensation and Amplification of Attenuation Bias in Causal Effect Estimates
    Marie-Ann Sengewald
    Steffi Pohl
    [J]. Psychometrika, 2019, 84 : 589 - 610
  • [46] Exploring the Causal Effect of Interpretation Bias on Attachment Expectations
    De Winter, Simon
    Bosmans, Guy
    Salemink, Elske
    [J]. CHILD DEVELOPMENT, 2017, 88 (01) : 131 - 140
  • [47] Private Causal Inference
    Kusner, Matt J.
    Sun, Yu
    Sridharan, Karthik
    Weinberger, Kilian Q.
    [J]. ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 51, 2016, 51 : 1308 - 1317
  • [48] The Challenge of Causal Inference
    Dammann, Olaf
    Leviton, Alan
    [J]. ANNALS OF NEUROLOGY, 2010, 68 (05) : 770 - 770
  • [49] THE RATIONALITY OF CAUSAL INFERENCE
    SHULTZ, TR
    [J]. BEHAVIORAL AND BRAIN SCIENCES, 1991, 14 (03) : 503 - 503
  • [50] Causal Graph Inference
    Poilinca, Simona
    Parajuli, Jhanak
    Abreu, Giuseppe
    [J]. 2015 49TH ASILOMAR CONFERENCE ON SIGNALS, SYSTEMS AND COMPUTERS, 2015, : 1209 - 1213