Causal inference and effect estimation using observational data

被引:16
|
作者
Igelstrom, Erik [1 ]
Craig, Peter [1 ]
Lewsey, Jim [2 ]
Lynch, John [3 ]
Pearce, Anna [1 ]
Katikireddi, Srinivasa Vittal [1 ]
机构
[1] Univ Glasgow, MRC CSO Social & Publ Hlth Sci Unit, Glasgow, Lanark, Scotland
[2] Univ Glasgow, Sch Hlth & Wellbeing, Hlth Econ & Hlth Technol Assessment, Glasgow, Lanark, Scotland
[3] Univ Adelaide, Sch Publ Hlth, Adelaide, SA, Australia
来源
基金
欧洲研究理事会; 英国惠康基金; 英国医学研究理事会;
关键词
methods; research design; study design; epidemiology; statistics; MENDELIAN RANDOMIZATION; MEDIATION ANALYSIS; EXCHANGEABILITY; IDENTIFIABILITY; INSTRUMENTS; REGRESSION; GLOSSARY; MODELS;
D O I
10.1136/jech-2022-219267
中图分类号
R1 [预防医学、卫生学];
学科分类号
1004 ; 120402 ;
摘要
Observational studies aiming to estimate causal effects often rely on conceptual frameworks that are unfamiliar to many researchers and practitioners. We provide a clear, structured overview of key concepts and terms, intended as a starting point for readers unfamiliar with the causal inference literature. First, we introduce theoretical frameworks underlying causal effect estimation methods: the counterfactual theory of causation, the potential outcomes framework, structural equations and directed acyclic graphs. Second, we define the most common causal effect estimands, and the issues of effect measure modification, interaction and mediation (direct and indirect effects). Third, we define the assumptions required to estimate causal effects: exchangeability, positivity, consistency and non-interference. Fourth, we define and explain biases that arise when attempting to estimate causal effects, including confounding, collider bias, selection bias and measurement bias. Finally, we describe common methods and study designs for causal effect estimation, including covariate adjustment, G-methods and natural experiment methods.
引用
收藏
页码:960 / 966
页数:7
相关论文
共 50 条
  • [1] Causal inference and observational data
    Ivan Olier
    Yiqiang Zhan
    Xiaoyu Liang
    Victor Volovici
    [J]. BMC Medical Research Methodology, 23
  • [2] Causal inference and observational data
    Olier, Ivan
    Zhan, Yiqiang
    Liang, Xiaoyu
    Volovici, Victor
    [J]. BMC MEDICAL RESEARCH METHODOLOGY, 2023, 23 (01)
  • [3] Causal inference with observational data
    Nichols, Austin
    [J]. STATA JOURNAL, 2007, 7 (04): : 507 - 541
  • [4] Observational process data analytics using causal inference
    Yang, Shu
    Bequette, B. Wayne
    [J]. AICHE JOURNAL, 2023, 69 (04)
  • [5] Causal effect estimation and inference using Stata
    Terza, Joseph V.
    [J]. STATA JOURNAL, 2017, 17 (04): : 939 - 961
  • [6] Causal inference from observational data
    Listl, Stefan
    Juerges, Hendrik
    Watt, Richard G.
    [J]. COMMUNITY DENTISTRY AND ORAL EPIDEMIOLOGY, 2016, 44 (05) : 409 - 415
  • [7] Causal Inference Methods for Intergenerational Research Using Observational Data
    Frach, Leonard
    Jami, Eshim S. S.
    McAdams, Tom A. A.
    Dudbridge, Frank
    Pingault, Jean-Baptiste
    [J]. PSYCHOLOGICAL REVIEW, 2023, 130 (06) : 1688 - 1703
  • [8] Using genetic data to strengthen causal inference in observational research
    Pingault, Jean-Baptiste
    O'Reilly, Paul F.
    Schoeler, Tabea
    Ploubidis, George B.
    Rijsdijk, Fruhling
    Dudbridge, Frank
    [J]. NATURE REVIEWS GENETICS, 2018, 19 (09) : 566 - 580
  • [9] Using genetic data to strengthen causal inference in observational research
    Jean-Baptiste Pingault
    Paul F. O’Reilly
    Tabea Schoeler
    George B. Ploubidis
    Frühling Rijsdijk
    Frank Dudbridge
    [J]. Nature Reviews Genetics, 2018, 19 : 566 - 580
  • [10] Causal inference on the impact of nutrition policies using observational data
    Mazzocchi, Mario
    Capacci, Sara
    Biondi, Beatrice
    [J]. BIO-BASED AND APPLIED ECONOMICS, 2022, 11 (01): : 3 - 20