Causal effect estimation and inference using Stata

被引:2
|
作者
Terza, Joseph V. [1 ]
机构
[1] Indiana Univ Purdue Univ, Dept Econ, Indianapolis, IN 46202 USA
来源
STATA JOURNAL | 2017年 / 17卷 / 04期
关键词
st0506; margins; causal effect estimation; causal inference; STANDARD ERRORS; MODELS;
D O I
10.1177/1536867X1701700410
中图分类号
O1 [数学]; C [社会科学总论];
学科分类号
03 ; 0303 ; 0701 ; 070101 ;
摘要
Terza (2016b, Health Services Research 51: 1109-1113) gives the correct generic expression for the asymptotic standard errors of statistics formed as sample means of nonlinear data transformations. In this article, I assess the performance of the Stata margins command as a relatively simple alternative for calculating such standard errors. I note that margins is not available for all packaged nonlinear regression commands in Stata and cannot be implemented in conjunction with user-defined-and-coded nonlinear estimation protocols that do not make a predict command available. When margins is available, however, I establish (using a real-data example) that it produces standard errors that are asymptotically equivalent to those obtained from the formulations in Terza (2016b) and the appendix available with this article. This result favors using margins (with its relative coding simplicity) when available. In all other cases, use Mata to code the standard-error formulations in Terza (2016b). I discuss examples, and I give corresponding Stata do-files in appendices.
引用
收藏
页码:939 / 961
页数:23
相关论文
共 50 条
  • [1] Causal inference and effect estimation using observational data
    Igelstrom, Erik
    Craig, Peter
    Lewsey, Jim
    Lynch, John
    Pearce, Anna
    Katikireddi, Srinivasa Vittal
    [J]. JOURNAL OF EPIDEMIOLOGY AND COMMUNITY HEALTH, 2022, 76 (11): : 960 - 966
  • [2] Robust variance estimation and inference for causal effect estimation
    Tran, Linh
    Petersen, Maya
    Schwab, Joshua
    van der Laan, Mark J.
    [J]. JOURNAL OF CAUSAL INFERENCE, 2023, 11 (01)
  • [3] Introduction to computational causal inference using reproducible Stata, R, and Python']Python code: A tutorial
    Smith, Matthew J.
    Mansournia, Mohammad A.
    Maringe, Camille
    Zivich, Paul N.
    Cole, Stephen R.
    Leyrat, Clemence
    Belot, Aurelien
    Rachet, Bernard
    Luque-Fernandez, Miguel A.
    [J]. STATISTICS IN MEDICINE, 2022, 41 (02) : 407 - 432
  • [4] Estimation and Inference for the Causal Effect of Receiving Treatment on a Multinomial Outcome
    Cheng, Jing
    [J]. BIOMETRICS, 2009, 65 (01) : 96 - 103
  • [5] INFLUENCE ESTIMATION ON SOCIAL MEDIA NETWORKS USING CAUSAL INFERENCE
    Smith, Steven T.
    Kao, Edward K.
    Shah, Danelle C.
    Simek, Olga
    Rubin, Donald B.
    [J]. 2018 IEEE STATISTICAL SIGNAL PROCESSING WORKSHOP (SSP), 2018, : 328 - 332
  • [6] Multiple robustness estimation in causal inference
    Wang, Lei
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2019, 48 (23) : 5701 - 5718
  • [7] Causal Inference in Multisensory Heading Estimation
    de Winkel, Ksander N.
    Katliar, Mikhail
    Buelthoff, Heinrich H.
    [J]. PLOS ONE, 2017, 12 (01):
  • [8] Collective causal inference with lag estimation
    Du, Sizhen
    Song, Guojie
    Hong, Haikun
    [J]. NEUROCOMPUTING, 2019, 323 : 299 - 310
  • [9] Bunching estimation of elasticities using Stata
    Bertanha, Marinho
    McCallum, Andrew H.
    Payne, Alexis
    Seegert, Nathan
    [J]. STATA JOURNAL, 2022, 22 (03): : 597 - 624
  • [10] Fast and wild: Bootstrap inference in Stata using boottest
    Roodman, David
    MacKinnon, James G.
    Nielsen, Morten Orregaard
    Webb, Matthew D.
    [J]. STATA JOURNAL, 2019, 19 (01): : 4 - 60