Causal inference for psychologists who think that causal inference is not for them

被引:1
|
作者
Rohrer, Julia M. [1 ]
机构
[1] Univ Leipzig, Wilhelm Wundt Inst Psychol, Leipzig, Germany
关键词
causal inference; directed acyclic graphs; incremental validity; internal validity; posttreatment bias; potential outcomes; prediction; VALIDITY;
D O I
10.1111/spc3.12948
中图分类号
B84 [心理学];
学科分类号
04 ; 0402 ;
摘要
Correlation does not imply causation and psychologists' causal inference training often focuses on the conclusion that therefore experiments are needed-without much consideration for the causal inference frameworks used elsewhere. This leaves researchers ill-equipped to solve inferential problems that they encounter in their work, leading to mistaken conclusions and incoherent statistical analyses. For a more systematic approach to causal inference, this article provides brief introductions to the potential outcomes framework-the "lingua franca" of causal inference-and to directed acyclic graphs, a graphical notation that makes it easier to systematically reason about complex causal situations. I then discuss two issues that may be of interest to researchers in social and personality psychology who think that formalized causal inference is of little relevance to their work. First, posttreatment bias: In various common scenarios (noncompliance, mediation analysis, missing data), researchers may analyze data from experimental studies in a manner that results in internally invalid conclusions, despite randomization. Second, tests of incremental validity: Routine practices in personality psychology suggest that they may be conducted for at least two different reasons (to demonstrate the non-redundancy of new scales, to support causal conclusions) without being particularly suited for either purpose. Taking causal inference seriously is challenging; it reveals assumptions that may make many uncomfortable. However, ultimately it is a necessary step to ensure the validity of psychological research.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] Causal Inference
    Kuang, Kun
    Li, Lian
    Geng, Zhi
    Xu, Lei
    Zhang, Kun
    Liao, Beishui
    Huang, Huaxin
    Ding, Peng
    Miao, Wang
    Jiang, Zhichao
    [J]. ENGINEERING, 2020, 6 (03) : 253 - 263
  • [2] CAUSAL INFERENCE
    ROTHMAN, KJ
    LANES, S
    ROBINS, J
    [J]. EPIDEMIOLOGY, 1993, 4 (06) : 555 - 556
  • [3] The Causal Effects of Causal Inference Pedagogy
    Swanson, Sonja A. A.
    [J]. EPIDEMIOLOGY, 2023, 34 (05) : 611 - 613
  • [4] Private Causal Inference
    Kusner, Matt J.
    Sun, Yu
    Sridharan, Karthik
    Weinberger, Kilian Q.
    [J]. ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 51, 2016, 51 : 1308 - 1317
  • [5] THE RATIONALITY OF CAUSAL INFERENCE
    SHULTZ, TR
    [J]. BEHAVIORAL AND BRAIN SCIENCES, 1991, 14 (03) : 503 - 503
  • [6] Causal Graph Inference
    Poilinca, Simona
    Parajuli, Jhanak
    Abreu, Giuseppe
    [J]. 2015 49TH ASILOMAR CONFERENCE ON SIGNALS, SYSTEMS AND COMPUTERS, 2015, : 1209 - 1213
  • [7] The Challenge of Causal Inference
    Dammann, Olaf
    Leviton, Alan
    [J]. ANNALS OF NEUROLOGY, 2010, 68 (05) : 770 - 770
  • [8] Indeterminism and causal inference
    Pedro, Inaki San
    Suarez, Mauricio
    [J]. TEOREMA, 2014, 33 (01): : 95 - 109
  • [9] Prediction and causal inference
    Gagliardi, Luigi
    [J]. ACTA PAEDIATRICA, 2009, 98 (12) : 1890 - 1892
  • [10] THE FOUNDATIONS OF CAUSAL INFERENCE
    Pearl, Judea
    [J]. SOCIOLOGICAL METHODOLOGY, VOL 40, 2010, 40 : 75 - 149