Object Level Depth Reconstruction for Category Level 6D Object Pose Estimation from Monocular RGB Image

被引:5
|
作者
Fan, Zhaoxin [1 ]
Song, Zhenbo [2 ]
Xu, Jian [4 ]
Wang, Zhicheng [4 ]
Wu, Kejian [4 ]
Liu, Hongyan [3 ]
He, Jun [1 ]
机构
[1] Renmin Univ China, Sch Informat, Key Lab Data Engn & Knowledge Engn MOE, Beijing 100872, Peoples R China
[2] Nanjing Univ Sci & Technol, Sch Comp Sci & Engn, Nanjing 210094, Peoples R China
[3] Tsinghua Univ, Dept Management Sci & Engn, Beijing 100084, Peoples R China
[4] Nreal, Beijing, Peoples R China
来源
基金
中国国家自然科学基金;
关键词
Category-level 6D pose estimation; Object-level depth; Position hints; Decoupled depth reconstruction;
D O I
10.1007/978-3-031-20086-1_13
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Recently, RGBD-based category-level 6D object pose estimation has achieved promising improvement in performance, however, the requirement of depth information prohibits broader applications. In order to relieve this problem, this paper proposes a novel approach named Object Level Depth reconstruction Network (OLD-Net) taking only RGB images as input for category-level 6D object pose estimation. We propose to directly predict object-level depth from a monocular RGB image by deforming the category-level shape prior into object-level depth and the canonical NOCS representation. Two novel modules named Normalized Global Position Hints (NGPH) and Shape-aware Decoupled Depth Reconstruction (SDDR) module are introduced to learn high fidelity object-level depth and delicate shape representations. At last, the 6D object pose is solved by aligning the predicted canonical representation with the back-projected object-level depth. Extensive experiments on the challenging CAMERA25 and REAL275 datasets indicate that our model, though simple, achieves state-of-the-art performance.
引用
收藏
页码:220 / 236
页数:17
相关论文
共 50 条
  • [41] Dense Color Constraints based 6D object pose estimation from RGB-D images
    Wang, Zilun
    Liu, Yi
    Xu, Chi
    [J]. 2022 41ST CHINESE CONTROL CONFERENCE (CCC), 2022, : 6416 - 6420
  • [42] Single Shot 6D Object Pose Estimation
    Kleeberger, Kilian
    Huber, Marco F.
    [J]. 2020 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), 2020, : 6239 - 6245
  • [43] BOP: Benchmark for 6D Object Pose Estimation
    Hodan, Tomas
    Michel, Frank
    Brachmann, Eric
    Kehl, Wadim
    Buch, Anders Glent
    Kraft, Dirk
    Drost, Bertram
    Vidal, Joel
    Ihrke, Stephan
    Zabulis, Xenophon
    Sahin, Caner
    Manhardt, Fabian
    Tombari, Federico
    Kim, Tae-Kyun
    Matas, Jiri
    Rother, Carsten
    [J]. COMPUTER VISION - ECCV 2018, PT X, 2018, 11214 : 19 - 35
  • [44] 6D Gripper Pose Estimation from RGB-D Image
    Tang, Qirong
    Hu, Xue
    Chu, Zhugang
    Wu, Shun
    [J]. COMPUTER VISION SYSTEMS (ICVS 2019), 2019, 11754 : 120 - 125
  • [45] Survey on 6D Pose Estimation of Rigid Object
    Chen, Jiale
    Zhang, Lijun
    Liu, Yi
    Xu, Chi
    [J]. PROCEEDINGS OF THE 39TH CHINESE CONTROL CONFERENCE, 2020, : 7440 - 7445
  • [46] 6D-ViT: Category-Level 6D Object Pose Estimation via Transformer-Based Instance Representation Learning
    Zou, Lu
    Huang, Zhangjin
    Gu, Naijie
    Wang, Guoping
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2022, 31 : 6907 - 6921
  • [47] A Robust Convolutional Neural Network for 6D Object Pose Estimation from RGB Image with Distance Regularization Voting Loss
    Ullah, Faheem
    Wei, Wu
    Daradkeh, Yousef Ibrahim
    Javed, Muhammad
    Rabbi, Ihsan
    Al Juaid, Hanan
    [J]. SCIENTIFIC PROGRAMMING, 2022, 2022
  • [48] Synthetic Depth Image-Based Category-Level Object Pose Estimation With Effective Pose Decoupling and Shape Optimization
    Yu, Sheng
    Zhai, Di-Hua
    Xia, Yuanqing
    [J]. IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2024, 73
  • [49] Keypoint-Based Category-Level Object Pose Tracking from an RGB Sequence with Uncertainty Estimation
    Lin, Yunzhi
    Tremblay, Jonathan
    Tyree, Stephen
    Vela, Patricio A.
    Birchfield, Stan
    [J]. 2022 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA 2022), 2022,
  • [50] Fast 6D object pose refinement in depth images
    Haoruo Zhang
    Qixin Cao
    [J]. Applied Intelligence, 2019, 49 : 2287 - 2300