Linearly independent vertices and minimum semidefinite rank

被引:34
|
作者
Hackney, Philip [2 ]
Harris, Benjamin [3 ]
Lay, Margaret [4 ]
Mitchell, Lon H. [5 ]
Narayan, Sivaram K. [1 ]
Pascoe, Amanda [6 ]
机构
[1] Cent Michigan Univ, Dept Math, Mt Pleasant, MI 48859 USA
[2] Purdue Univ, Dept Math, W Lafayette, IN 47907 USA
[3] Brown Univ, Dept Math, Providence, RI 02912 USA
[4] Grinnell Coll, Dept Math & Comp Sci, Grinnell, IA 50112 USA
[5] Virginia Commonwealth Univ, Dept Math, Richmond, VA 23284 USA
[6] Furman Univ, Dept Math, Greenville, SC 29613 USA
基金
美国国家科学基金会;
关键词
Minimum semidefinite rank; Join; Linearly independent vertices; GRAPHS; REPRESENTATIONS; MATRICES;
D O I
10.1016/j.laa.2009.03.030
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the minimum semidefinite rank of a graph using vector representations of the graph and of certain subgraphs. We present a sufficient condition for when the vectors corresponding to a set of vertices of a graph must be linearly independent in any vector representation of that graph, and conjecture that the resulting graph invariant is equal to minimum semidefinite rank. Rotation of vector representations by a unitary matrix allows us to find the minimum semidefinite rank of the join of two graphs. We also improve upon previous results concerning the effect on minimum semidefinite rank of the removal of a vertex. (C) 2009 Elsevier Inc. All rights reserved.
引用
收藏
页码:1105 / 1115
页数:11
相关论文
共 50 条
  • [1] On the minimum semidefinite rank of signed graphs
    Matar, Nancy
    Mitchell, Lon H.
    Narayan, Sivaram K.
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2022, 642 : 73 - 85
  • [2] On the minimum semidefinite rank of a simple graph
    Booth, Matthew
    Hackney, Philip
    Harris, Benjamin
    Johnson, Charles R.
    Lay, Margaret
    Lenker, Terry D.
    Mitchell, Lon H.
    Narayan, Sivaram K.
    Pascoe, Amanda
    Sutton, Brian D.
    [J]. LINEAR & MULTILINEAR ALGEBRA, 2011, 59 (05): : 483 - 506
  • [3] Polytopes of Minimum Positive Semidefinite Rank
    João Gouveia
    Richard Z. Robinson
    Rekha R. Thomas
    [J]. Discrete & Computational Geometry, 2013, 50 : 679 - 699
  • [4] Polytopes of Minimum Positive Semidefinite Rank
    Gouveia, Joao
    Robinson, Richard Z.
    Thomas, Rekha R.
    [J]. DISCRETE & COMPUTATIONAL GEOMETRY, 2013, 50 (03) : 679 - 699
  • [5] Bounds on minimum semidefinite rank of graphs
    Narayan, Sivaram K.
    Sharawi, Yousra
    [J]. LINEAR & MULTILINEAR ALGEBRA, 2015, 63 (04): : 774 - 787
  • [6] Propagation tree decompositions and linearly independent vertices
    Mitchell, Lon
    [J]. THEORETICAL COMPUTER SCIENCE, 2021, 849 : 159 - 162
  • [7] Unitary matrix digraphs and minimum semidefinite rank
    Jiang, Yunjiang
    Mitchell, Lon H.
    Narayan, Sivaram K.
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2008, 428 (07) : 1685 - 1695
  • [8] On the graph complement conjecture for minimum semidefinite rank
    Mitchell, Lon H.
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2011, 435 (06) : 1311 - 1314
  • [9] The minimum semidefinite rank of a triangle-free graph
    Deaett, Louis
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2011, 434 (08) : 1945 - 1955
  • [10] Matrices attaining the minimum semidefinite rank of a chordal graph
    Shaked-Monderer, Naomi
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2013, 438 (10) : 3804 - 3816