Unitary matrix digraphs and minimum semidefinite rank

被引:16
|
作者
Jiang, Yunjiang [1 ,2 ,3 ]
Mitchell, Lon H. [1 ,2 ,3 ]
Narayan, Sivaram K. [1 ,2 ,3 ]
机构
[1] Cent Michigan Univ, Dept Math, Mt Pleasant, MI 48859 USA
[2] Virginia Commonwealth Univ, Dept Math, Richmond, VA 23284 USA
[3] Univ Georgia, Dept Math, Athens, GA 30602 USA
关键词
rank; positive semidefinite; digraph; unitary; graph; quadrangular;
D O I
10.1016/j.laa.2007.10.031
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For an undirected simple graph G, the minimum rank among all positive semidefinite matrices with graph G is called the minimum semidefinite rank (msr) of G. In this paper, we show that the msr of a given graph may be determined from the msr of a related bipartite graph. Finding the msr of a given bipartite graph is then shown to be equivalent to determining which digraphs encode the zero/nonzero pattern of a unitary matrix. We provide an algorithm to construct unitary matrices with a certain pattern, and use previous results to give a lower bound for the msr of certain bipartite graphs. (c) 2007 Elsevier Inc. All rights reserved.
引用
收藏
页码:1685 / 1695
页数:11
相关论文
共 50 条
  • [1] A NOTE ON THE POSITIVE SEMIDEFINITE MINIMUM RANK OF A SIGN PATTERN MATRIX
    Cai, Xinzhong
    Wang, Xinmao
    [J]. ELECTRONIC JOURNAL OF LINEAR ALGEBRA, 2013, 26 : 345 - 356
  • [2] MINIMUM-RANK POSITIVE SEMIDEFINITE MATRIX COMPLETION WITH CHORDAL PATTERNS AND APPLICATIONS TO SEMIDEFINITE RELAXATIONS
    Jiang, Xin
    Sun, Yifan
    Andersen, Martin S.
    Vandenberghe, Lieven
    [J]. Applied Set-Valued Analysis and Optimization, 2023, 5 (02): : 265 - 283
  • [3] A Note on a Lower Bound on the Minimum Rank of a Positive Semidefinite Hankel Matrix Rank Minimization Problem
    Xu, Yi
    Ren, Xiaorong
    Yan, Xihong
    [J]. MATHEMATICAL PROBLEMS IN ENGINEERING, 2021, 2021
  • [4] On the minimum semidefinite rank of a simple graph
    Booth, Matthew
    Hackney, Philip
    Harris, Benjamin
    Johnson, Charles R.
    Lay, Margaret
    Lenker, Terry D.
    Mitchell, Lon H.
    Narayan, Sivaram K.
    Pascoe, Amanda
    Sutton, Brian D.
    [J]. LINEAR & MULTILINEAR ALGEBRA, 2011, 59 (05): : 483 - 506
  • [5] On the minimum semidefinite rank of signed graphs
    Matar, Nancy
    Mitchell, Lon H.
    Narayan, Sivaram K.
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2022, 642 : 73 - 85
  • [6] Minimum rank positive semidefinite solution to the matrix approximation problem in the spectral norm
    Liu, Xifu
    Luo, Le
    [J]. APPLIED MATHEMATICS LETTERS, 2020, 107
  • [7] Polytopes of Minimum Positive Semidefinite Rank
    João Gouveia
    Richard Z. Robinson
    Rekha R. Thomas
    [J]. Discrete & Computational Geometry, 2013, 50 : 679 - 699
  • [8] Polytopes of Minimum Positive Semidefinite Rank
    Gouveia, Joao
    Robinson, Richard Z.
    Thomas, Rekha R.
    [J]. DISCRETE & COMPUTATIONAL GEOMETRY, 2013, 50 (03) : 679 - 699
  • [9] Bounds on minimum semidefinite rank of graphs
    Narayan, Sivaram K.
    Sharawi, Yousra
    [J]. LINEAR & MULTILINEAR ALGEBRA, 2015, 63 (04): : 774 - 787
  • [10] On the graph complement conjecture for minimum semidefinite rank
    Mitchell, Lon H.
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2011, 435 (06) : 1311 - 1314