On the graph complement conjecture for minimum semidefinite rank

被引:5
|
作者
Mitchell, Lon H. [1 ]
机构
[1] Virginia Commonwealth Univ, Dept Math & Appl Math, Richmond, VA 23284 USA
关键词
Minimum semidefinite rank; Tree-width; Strong Arnold Hypothesis; MATRICES;
D O I
10.1016/j.laa.2011.03.011
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this note, we combine a number of recent ideas to give new results on the graph complement conjecture for minimum semidefinite rank. (C) 2011 Elsevier Inc. All rights reserved.
引用
收藏
页码:1311 / 1314
页数:4
相关论文
共 50 条
  • [1] On the graph complement conjecture for minimum rank
    Barioli, Francesco
    Barrett, Wayne
    Fallat, Shaun M.
    Hall, H. Tracy
    Hogben, Leslie
    van der Holst, Hein
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2012, 436 (12) : 4373 - 4391
  • [2] BOUNDS ON THE SUM OF MINIMUM SEMIDEFINITE RANK OF A GRAPH AND ITS COMPLEMENT
    Narayan, Sivaram K.
    Sharawi, Yousra
    [J]. ELECTRONIC JOURNAL OF LINEAR ALGEBRA, 2018, 34 : 399 - 406
  • [3] On the minimum semidefinite rank of a simple graph
    Booth, Matthew
    Hackney, Philip
    Harris, Benjamin
    Johnson, Charles R.
    Lay, Margaret
    Lenker, Terry D.
    Mitchell, Lon H.
    Narayan, Sivaram K.
    Pascoe, Amanda
    Sutton, Brian D.
    [J]. LINEAR & MULTILINEAR ALGEBRA, 2011, 59 (05): : 483 - 506
  • [4] The minimum semidefinite rank of a triangle-free graph
    Deaett, Louis
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2011, 434 (08) : 1945 - 1955
  • [5] Matrices attaining the minimum semidefinite rank of a chordal graph
    Shaked-Monderer, Naomi
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2013, 438 (10) : 3804 - 3816
  • [6] The minimum semidefinite rank of the complement of partial k-trees
    Sinkovic, John
    van der Holst, Hein
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2011, 434 (06) : 1468 - 1474
  • [7] A new lower bound for the positive semidefinite minimum rank of a graph
    Zimmer, Andrew M.
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2013, 438 (03) : 1095 - 1112
  • [8] ON THE MINIMUM RANK AMONG POSITIVE SEMIDEFINITE MATRICES WITH A GIVEN GRAPH
    Booth, Matthew
    Hackney, Philip
    Harris, Benjamin
    Johnson, Charles R.
    Lay, Margaret
    Mitchell, Lon H.
    Narayan, Sivaram K.
    Pascoe, Amanda
    Steinmetz, Kelly
    Sutton, Brian D.
    Wang, Wendy
    [J]. SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2008, 30 (02) : 731 - 740
  • [9] Graph Coloring and Semidefinite Rank
    Mirka, Renee
    Smedira, Devin
    Williamson, David P.
    [J]. INTEGER PROGRAMMING AND COMBINATORIAL OPTIMIZATION, IPCO 2022, 2022, 13265 : 387 - 401
  • [10] Graph coloring and semidefinite rank
    Mirka, Renee
    Smedira, Devin
    Williamson, David P.
    [J]. MATHEMATICAL PROGRAMMING, 2024, 206 (1-2) : 577 - 605