ON THE MINIMUM RANK AMONG POSITIVE SEMIDEFINITE MATRICES WITH A GIVEN GRAPH

被引:46
|
作者
Booth, Matthew [7 ]
Hackney, Philip [2 ]
Harris, Benjamin [3 ]
Johnson, Charles R. [4 ]
Lay, Margaret [5 ]
Mitchell, Lon H. [6 ]
Narayan, Sivaram K. [1 ]
Pascoe, Amanda [8 ]
Steinmetz, Kelly [9 ]
Sutton, Brian D. [10 ]
Wang, Wendy [11 ]
机构
[1] Cent Michigan Univ, Dept Math, Mt Pleasant, MI 48859 USA
[2] Purdue Univ, Dept Math, W Lafayette, IN 47907 USA
[3] Brown Univ, Dept Math, Providence, RI 02912 USA
[4] Coll William & Mary, Dept Math, Williamsburg, VA 23187 USA
[5] Grinnell Coll, Dept Math & Comp Sci, Grinnell, IA 50112 USA
[6] Virginia Commonwealth Univ, Dept Math, Richmond, VA 23284 USA
[7] Oberlin Coll, Dept Math, Oberlin, OH 44074 USA
[8] Furman Univ, Dept Math, Greenville, SC 29613 USA
[9] Indiana Univ, Dept Math, Bloomington, IN 47405 USA
[10] Randolph Macon Coll, Dept Math, Ashland, VA 23005 USA
[11] Duke Univ, Dept Math, Durham, NC 27708 USA
基金
美国国家科学基金会;
关键词
rank; positive semidefinite; graph of a matrix;
D O I
10.1137/050629793
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let P(G) be the set of all positive semidefinite matrices whose graph is G, and msr(G) be the minimum rank of all matrices in P(G). Upper and lower bounds for msr(G) are given and used to determine msr(G) for some well-known graphs, including chordal graphs, and for all simple graphs on less than seven vertices.
引用
收藏
页码:731 / 740
页数:10
相关论文
共 50 条
  • [1] Matrices attaining the minimum semidefinite rank of a chordal graph
    Shaked-Monderer, Naomi
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2013, 438 (10) : 3804 - 3816
  • [2] A lower bound for minimum positive semidefinite rank by constructing an OS-vertex set for a given graph
    Lei, Li
    Huang, Ting-Zhu
    [J]. INFORMATION-AN INTERNATIONAL INTERDISCIPLINARY JOURNAL, 2011, 14 (06): : 1873 - 1878
  • [3] A new lower bound for the positive semidefinite minimum rank of a graph
    Zimmer, Andrew M.
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2013, 438 (03) : 1095 - 1112
  • [4] On the minimum semidefinite rank of a simple graph
    Booth, Matthew
    Hackney, Philip
    Harris, Benjamin
    Johnson, Charles R.
    Lay, Margaret
    Lenker, Terry D.
    Mitchell, Lon H.
    Narayan, Sivaram K.
    Pascoe, Amanda
    Sutton, Brian D.
    [J]. LINEAR & MULTILINEAR ALGEBRA, 2011, 59 (05): : 483 - 506
  • [5] Rank inequalities for positive semidefinite matrices
    Lundquist, M
    Barrett, W
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 1996, 248 : 91 - 100
  • [6] Polytopes of Minimum Positive Semidefinite Rank
    João Gouveia
    Richard Z. Robinson
    Rekha R. Thomas
    [J]. Discrete & Computational Geometry, 2013, 50 : 679 - 699
  • [7] Polytopes of Minimum Positive Semidefinite Rank
    Gouveia, Joao
    Robinson, Richard Z.
    Thomas, Rekha R.
    [J]. DISCRETE & COMPUTATIONAL GEOMETRY, 2013, 50 (03) : 679 - 699
  • [8] On the graph complement conjecture for minimum semidefinite rank
    Mitchell, Lon H.
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2011, 435 (06) : 1311 - 1314
  • [9] POSITIVE SEMIDEFINITE MATRICES WITH A GIVEN SPARSITY PATTERN
    AGLER, J
    HELTON, JW
    MCCULLOUGH, S
    RODMAN, L
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 1988, 107 : 101 - 149
  • [10] Matrices with high completely positive semidefinite rank
    Gribling, Sander
    de Laat, David
    Laurent, Monique
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2017, 513 : 122 - 148