Polytopes of Minimum Positive Semidefinite Rank

被引:0
|
作者
João Gouveia
Richard Z. Robinson
Rekha R. Thomas
机构
[1] University of Coimbra,Department of Mathematics, CMUC
[2] University of Washington,Department of Mathematics
来源
关键词
Positive semidefinite rank; Polytope; Slack matrix; Hadamard square roots; Cone lift;
D O I
暂无
中图分类号
学科分类号
摘要
The positive semidefinite (psd) rank of a polytope is the smallest k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k$$\end{document} for which the cone of k×k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k \times k$$\end{document} real symmetric psd matrices admits an affine slice that projects onto the polytope. In this paper we show that the psd rank of a polytope is at least the dimension of the polytope plus one, and we characterize those polytopes whose psd rank equals this lower bound. We give several classes of polytopes that achieve the minimum possible psd rank including a complete characterization in dimensions two and three.
引用
收藏
页码:679 / 699
页数:20
相关论文
共 50 条
  • [1] Polytopes of Minimum Positive Semidefinite Rank
    Gouveia, Joao
    Robinson, Richard Z.
    Thomas, Rekha R.
    [J]. DISCRETE & COMPUTATIONAL GEOMETRY, 2013, 50 (03) : 679 - 699
  • [2] Four-dimensional polytopes of minimum positive semidefinite rank
    Gouveia, Joao
    Pashkovich, Kanstanstin
    Robinson, Richard Z.
    Thomas, Rekha R.
    [J]. JOURNAL OF COMBINATORIAL THEORY SERIES A, 2017, 145 : 184 - 226
  • [3] A new lower bound for the positive semidefinite minimum rank of a graph
    Zimmer, Andrew M.
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2013, 438 (03) : 1095 - 1112
  • [4] A NOTE ON THE POSITIVE SEMIDEFINITE MINIMUM RANK OF A SIGN PATTERN MATRIX
    Cai, Xinzhong
    Wang, Xinmao
    [J]. ELECTRONIC JOURNAL OF LINEAR ALGEBRA, 2013, 26 : 345 - 356
  • [5] ON THE MINIMUM RANK AMONG POSITIVE SEMIDEFINITE MATRICES WITH A GIVEN GRAPH
    Booth, Matthew
    Hackney, Philip
    Harris, Benjamin
    Johnson, Charles R.
    Lay, Margaret
    Mitchell, Lon H.
    Narayan, Sivaram K.
    Pascoe, Amanda
    Steinmetz, Kelly
    Sutton, Brian D.
    Wang, Wendy
    [J]. SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2008, 30 (02) : 731 - 740
  • [6] Positive semidefinite rank
    Hamza Fawzi
    João Gouveia
    Pablo A. Parrilo
    Richard Z. Robinson
    Rekha R. Thomas
    [J]. Mathematical Programming, 2015, 153 : 133 - 177
  • [7] Positive semidefinite rank
    Fawzi, Hamza
    Gouveia, Joao
    Parrilo, Pablo A.
    Robinson, Richard Z.
    Thomas, Rekha R.
    [J]. MATHEMATICAL PROGRAMMING, 2015, 153 (01) : 133 - 177
  • [8] MINIMUM-RANK POSITIVE SEMIDEFINITE MATRIX COMPLETION WITH CHORDAL PATTERNS AND APPLICATIONS TO SEMIDEFINITE RELAXATIONS
    Jiang, Xin
    Sun, Yifan
    Andersen, Martin S.
    Vandenberghe, Lieven
    [J]. Applied Set-Valued Analysis and Optimization, 2023, 5 (02): : 265 - 283
  • [9] ORTHOGONAL REPRESENTATIONS, PROJECTIVE RANK, AND FRACTIONAL MINIMUM POSITIVE SEMIDEFINITE RANK: CONNECTIONS AND NEW DIRECTIONS
    Hogben, Leslie
    Palmowski, Kevin F.
    Roberson, David E.
    Severini, Simone
    [J]. ELECTRONIC JOURNAL OF LINEAR ALGEBRA, 2017, 32 : 98 - 115
  • [10] A Note on a Lower Bound on the Minimum Rank of a Positive Semidefinite Hankel Matrix Rank Minimization Problem
    Xu, Yi
    Ren, Xiaorong
    Yan, Xihong
    [J]. MATHEMATICAL PROBLEMS IN ENGINEERING, 2021, 2021