Polytopes of Minimum Positive Semidefinite Rank

被引:0
|
作者
João Gouveia
Richard Z. Robinson
Rekha R. Thomas
机构
[1] University of Coimbra,Department of Mathematics, CMUC
[2] University of Washington,Department of Mathematics
来源
关键词
Positive semidefinite rank; Polytope; Slack matrix; Hadamard square roots; Cone lift;
D O I
暂无
中图分类号
学科分类号
摘要
The positive semidefinite (psd) rank of a polytope is the smallest k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k$$\end{document} for which the cone of k×k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k \times k$$\end{document} real symmetric psd matrices admits an affine slice that projects onto the polytope. In this paper we show that the psd rank of a polytope is at least the dimension of the polytope plus one, and we characterize those polytopes whose psd rank equals this lower bound. We give several classes of polytopes that achieve the minimum possible psd rank including a complete characterization in dimensions two and three.
引用
收藏
页码:679 / 699
页数:20
相关论文
共 50 条
  • [41] A Remark on the Rank of Positive Semidefinite Matrices Subject to Affine Constraints
    A. Barvinok
    [J]. Discrete & Computational Geometry, 2001, 25 : 23 - 31
  • [42] SPARSITY PATTERNS WITH HIGH RANK EXTREMAL POSITIVE SEMIDEFINITE MATRICES
    HELTON, JW
    LAM, D
    WOERDEMAN, HJ
    [J]. SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 1994, 15 (01) : 299 - 312
  • [43] Joint Rank and Positive Semidefinite Constrained Optimization for Projection Matrix
    Li, Qiuwei
    Li, Shuang
    Bai, Huang
    Li, Gang
    Chang, Liping
    [J]. PROCEEDINGS OF THE 2014 9TH IEEE CONFERENCE ON INDUSTRIAL ELECTRONICS AND APPLICATIONS (ICIEA), 2014, : 1049 - 1054
  • [44] Correlation matrices, Clifford algebras, and completely positive semidefinite rank
    Prakash, Anupam
    Varvitsiotis, Antonios
    [J]. LINEAR & MULTILINEAR ALGEBRA, 2020, 68 (05): : 1039 - 1056
  • [45] A SPARSE DECOMPOSITION OF LOW RANK SYMMETRIC POSITIVE SEMIDEFINITE MATRICES
    Hou, Thomas Y.
    Li, Qin
    Zhang, Pengchuan
    [J]. MULTISCALE MODELING & SIMULATION, 2017, 15 (01): : 410 - 444
  • [46] LOW-RANK OPTIMIZATION ON THE CONE OF POSITIVE SEMIDEFINITE MATRICES
    Journee, M.
    Bach, F.
    Absil, P. -A.
    Sepulchre, R.
    [J]. SIAM JOURNAL ON OPTIMIZATION, 2010, 20 (05) : 2327 - 2351
  • [47] Minimum norm solution to the positive semidefinite linear complementarity problem
    Pardalos, Panos M.
    Ketabchi, Saeed
    Moosaei, Hossein
    [J]. OPTIMIZATION, 2014, 63 (03) : 359 - 369
  • [48] Lower bounds for minimum semidefinite rank from orthogonal removal and chordal supergraphs
    Mitchell, Lon H.
    Narayan, Sivaram K.
    Zimmer, Andrew M.
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2012, 436 (03) : 525 - 536
  • [49] Elementary polytopes with high lift-and-project ranks for strong positive semidefinite operators
    Au, Yu Hin
    Tuncel, Levent
    [J]. DISCRETE OPTIMIZATION, 2018, 27 : 103 - 129
  • [50] RIEMANNIAN METRIC AND GEOMETRIC MEAN FOR POSITIVE SEMIDEFINITE MATRICES OF FIXED RANK
    Bonnabel, Silvere
    Sepulchre, Rodolphe
    [J]. SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2009, 31 (03) : 1055 - 1070