A Note on a Lower Bound on the Minimum Rank of a Positive Semidefinite Hankel Matrix Rank Minimization Problem

被引:0
|
作者
Xu, Yi [1 ,2 ]
Ren, Xiaorong [3 ]
Yan, Xihong [3 ]
机构
[1] Southeast Univ, Inst Math, Nanjing 210096, Jiangsu, Peoples R China
[2] Nanjing Ctr Appl Math, Nanjing, Peoples R China
[3] Taiyuan Normal Univ, Dept Math, Jinzhong 030619, Shanxi, Peoples R China
基金
中国国家自然科学基金;
关键词
D O I
10.1155/2021/2524016
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This paper investigates the problem of approximating the global minimum of a positive semidefinite Hankel matrix minimization problem with linear constraints. We provide a lower bound on the objective of minimizing the rank of the Hankel matrix in the problem based on conclusions from nonnegative polynomials, semi-infinite programming, and the dual theorem. We prove that the lower bound is almost half of the number of linear constraints of the optimization problem.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] A new lower bound for the positive semidefinite minimum rank of a graph
    Zimmer, Andrew M.
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2013, 438 (03) : 1095 - 1112
  • [2] A NOTE ON THE POSITIVE SEMIDEFINITE MINIMUM RANK OF A SIGN PATTERN MATRIX
    Cai, Xinzhong
    Wang, Xinmao
    [J]. ELECTRONIC JOURNAL OF LINEAR ALGEBRA, 2013, 26 : 345 - 356
  • [3] On the rank minimization problem over a positive semidefinite linear matrix inequality
    Mesbahi, M
    Papavassilopoulos, GP
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1997, 42 (02) : 239 - 243
  • [4] A Lower Bound on the Positive Semidefinite Rank of Convex Bodies
    Fawzi, Hamza
    El Din, Mohab Safey
    [J]. SIAM JOURNAL ON APPLIED ALGEBRA AND GEOMETRY, 2018, 2 (01): : 126 - 139
  • [5] Minimum rank positive semidefinite solution to the matrix approximation problem in the spectral norm
    Liu, Xifu
    Luo, Le
    [J]. APPLIED MATHEMATICS LETTERS, 2020, 107
  • [6] Polytopes of Minimum Positive Semidefinite Rank
    João Gouveia
    Richard Z. Robinson
    Rekha R. Thomas
    [J]. Discrete & Computational Geometry, 2013, 50 : 679 - 699
  • [7] Polytopes of Minimum Positive Semidefinite Rank
    Gouveia, Joao
    Robinson, Richard Z.
    Thomas, Rekha R.
    [J]. DISCRETE & COMPUTATIONAL GEOMETRY, 2013, 50 (03) : 679 - 699
  • [8] A lower bound for minimum positive semidefinite rank by constructing an OS-vertex set for a given graph
    Lei, Li
    Huang, Ting-Zhu
    [J]. INFORMATION-AN INTERNATIONAL INTERDISCIPLINARY JOURNAL, 2011, 14 (06): : 1873 - 1878
  • [9] Unitary matrix digraphs and minimum semidefinite rank
    Jiang, Yunjiang
    Mitchell, Lon H.
    Narayan, Sivaram K.
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2008, 428 (07) : 1685 - 1695
  • [10] Positive Semidefinite Matrix Factorization: A Connection With Phase Retrieval and Affine Rank Minimization
    Lahat, Dana
    Lang, Yanbin
    Tan, Vincent Y. F.
    Fevotte, Cedric
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2021, 69 : 3059 - 3074