Minimum rank positive semidefinite solution to the matrix approximation problem in the spectral norm

被引:3
|
作者
Liu, Xifu [1 ]
Luo, Le [1 ]
机构
[1] Chongqing Normal Univ, Sch Math Sci, Chongqing 401331, Peoples R China
基金
中国国家自然科学基金;
关键词
Matrix approximation; Positive semidefinite solution; Minimum rank; Spectral norm; LEAST-SQUARES SOLUTIONS; CONSTRAINED MATRIX;
D O I
10.1016/j.aml.2020.106408
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we discuss the following minimum rank matrix approximation problem in the spectral norm: min(X >= 0) r(X) subject to parallel to A - BXB *parallel to(2) = min, where A epsilon C->=(mxm). and B epsilon C-mxn. By using the positive-semidefinite-type generalized singular value decomposition, we derive the expressions of the minimum rank and the minimum rank positive semidefinite solution to the above matrix approximation problem. (C) 2020 Elsevier Ltd. All rights reserved.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Minimum rank Hermitian solution to the matrix approximation problem in the spectral norm and its application
    Liu, Xifu
    [J]. APPLIED MATHEMATICS LETTERS, 2019, 98 : 164 - 170
  • [2] Minimum rank (skew) Hermitian solutions to the matrix approximation problem in the spectral norm
    Shen, Dongmei
    Wei, Musheng
    Liu, Yonghui
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2015, 288 : 351 - 365
  • [3] Minimum norm solution to the positive semidefinite linear complementarity problem
    Pardalos, Panos M.
    Ketabchi, Saeed
    Moosaei, Hossein
    [J]. OPTIMIZATION, 2014, 63 (03) : 359 - 369
  • [4] MINIMUM RANK SOLUTIONS TO THE MATRIX APPROXIMATION PROBLEMS IN THE SPECTRAL NORM
    Wei, Musheng
    Shen, Dongmei
    [J]. SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2012, 33 (03) : 940 - 957
  • [5] Positive Semidefinite Solution to Matrix Completion Problem and Matrix Approximation Problem
    Liu, Xifu
    [J]. FILOMAT, 2022, 36 (11) : 3709 - 3714
  • [6] A Note on a Lower Bound on the Minimum Rank of a Positive Semidefinite Hankel Matrix Rank Minimization Problem
    Xu, Yi
    Ren, Xiaorong
    Yan, Xihong
    [J]. MATHEMATICAL PROBLEMS IN ENGINEERING, 2021, 2021
  • [7] Low rank approximation of the symmetric positive semidefinite matrix
    Duan, Xuefeng
    Li, Jiaofen
    Wang, Qingwen
    Zhang, Xinjun
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2014, 260 : 236 - 243
  • [8] A NOTE ON THE POSITIVE SEMIDEFINITE MINIMUM RANK OF A SIGN PATTERN MATRIX
    Cai, Xinzhong
    Wang, Xinmao
    [J]. ELECTRONIC JOURNAL OF LINEAR ALGEBRA, 2013, 26 : 345 - 356
  • [9] On a Generalized Matrix Approximation Problem in the Spectral Norm
    Sou, Kin Cheong
    Rantzer, Anders
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2012, 436 (07) : 2331 - 2341
  • [10] Polytopes of Minimum Positive Semidefinite Rank
    João Gouveia
    Richard Z. Robinson
    Rekha R. Thomas
    [J]. Discrete & Computational Geometry, 2013, 50 : 679 - 699