Minimum rank positive semidefinite solution to the matrix approximation problem in the spectral norm

被引:3
|
作者
Liu, Xifu [1 ]
Luo, Le [1 ]
机构
[1] Chongqing Normal Univ, Sch Math Sci, Chongqing 401331, Peoples R China
基金
中国国家自然科学基金;
关键词
Matrix approximation; Positive semidefinite solution; Minimum rank; Spectral norm; LEAST-SQUARES SOLUTIONS; CONSTRAINED MATRIX;
D O I
10.1016/j.aml.2020.106408
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we discuss the following minimum rank matrix approximation problem in the spectral norm: min(X >= 0) r(X) subject to parallel to A - BXB *parallel to(2) = min, where A epsilon C->=(mxm). and B epsilon C-mxn. By using the positive-semidefinite-type generalized singular value decomposition, we derive the expressions of the minimum rank and the minimum rank positive semidefinite solution to the above matrix approximation problem. (C) 2020 Elsevier Ltd. All rights reserved.
引用
收藏
页数:8
相关论文
共 50 条
  • [41] Exact minimum rank approximation via Schatten p-norm minimization
    Liu, Lu
    Huang, Wei
    Chen, Di-Rong
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2014, 267 : 218 - 227
  • [42] Norm-preserving dilation theorems for a block positive semidefinite (definite) matrix
    Liu, Xifu
    [J]. LINEAR & MULTILINEAR ALGEBRA, 2022, 70 (22): : 7770 - 7777
  • [43] Low rank approximation of a Hankel matrix by structured total least norm
    Park, H
    Zhang, L
    Rosen, JB
    [J]. BIT NUMERICAL MATHEMATICS, 1999, 39 (04) : 757 - 779
  • [44] On the L1-norm Approximation of a Matrix by Another of Lower Rank
    Tsagkarakis, Nicholas
    Markopoulos, Panos P.
    Pados, Dimitris A.
    [J]. 2016 15TH IEEE INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND APPLICATIONS (ICMLA 2016), 2016, : 768 - 773
  • [45] Low Rank Approximation of a Hankel Matrix by Structured Total Least Norm
    H. Park
    L. Zhang
    J. B. Rosen
    [J]. BIT Numerical Mathematics, 1999, 39 : 757 - 779
  • [46] On the Uniqueness of Positive Semidefinite Matrix Solution under Compressed Observations
    Xu, Weiyu
    Tang, Ao
    [J]. 2010 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY, 2010, : 1523 - 1527
  • [47] A new graph parameter related to bounded rank positive semidefinite matrix completions
    Laurent, Monique
    Varvitsiotis, Antonios
    [J]. MATHEMATICAL PROGRAMMING, 2014, 145 (1-2) : 291 - 325
  • [48] A new graph parameter related to bounded rank positive semidefinite matrix completions
    Monique Laurent
    Antonios Varvitsiotis
    [J]. Mathematical Programming, 2014, 145 : 291 - 325
  • [49] Approximation algorithm for Max-Bisection problem with the positive semidefinite relaxation
    Xu, DC
    Han, JY
    [J]. JOURNAL OF COMPUTATIONAL MATHEMATICS, 2003, 21 (03) : 357 - 366
  • [50] Positive Semidefinite Matrix Factorization: A Connection With Phase Retrieval and Affine Rank Minimization
    Lahat, Dana
    Lang, Yanbin
    Tan, Vincent Y. F.
    Fevotte, Cedric
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2021, 69 : 3059 - 3074