Minimum rank positive semidefinite solution to the matrix approximation problem in the spectral norm

被引:3
|
作者
Liu, Xifu [1 ]
Luo, Le [1 ]
机构
[1] Chongqing Normal Univ, Sch Math Sci, Chongqing 401331, Peoples R China
基金
中国国家自然科学基金;
关键词
Matrix approximation; Positive semidefinite solution; Minimum rank; Spectral norm; LEAST-SQUARES SOLUTIONS; CONSTRAINED MATRIX;
D O I
10.1016/j.aml.2020.106408
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we discuss the following minimum rank matrix approximation problem in the spectral norm: min(X >= 0) r(X) subject to parallel to A - BXB *parallel to(2) = min, where A epsilon C->=(mxm). and B epsilon C-mxn. By using the positive-semidefinite-type generalized singular value decomposition, we derive the expressions of the minimum rank and the minimum rank positive semidefinite solution to the above matrix approximation problem. (C) 2020 Elsevier Ltd. All rights reserved.
引用
收藏
页数:8
相关论文
共 50 条
  • [21] A new lower bound for the positive semidefinite minimum rank of a graph
    Zimmer, Andrew M.
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2013, 438 (03) : 1095 - 1112
  • [22] Four-dimensional polytopes of minimum positive semidefinite rank
    Gouveia, Joao
    Pashkovich, Kanstanstin
    Robinson, Richard Z.
    Thomas, Rekha R.
    [J]. JOURNAL OF COMBINATORIAL THEORY SERIES A, 2017, 145 : 184 - 226
  • [23] ON THE MINIMUM RANK AMONG POSITIVE SEMIDEFINITE MATRICES WITH A GIVEN GRAPH
    Booth, Matthew
    Hackney, Philip
    Harris, Benjamin
    Johnson, Charles R.
    Lay, Margaret
    Mitchell, Lon H.
    Narayan, Sivaram K.
    Pascoe, Amanda
    Steinmetz, Kelly
    Sutton, Brian D.
    Wang, Wendy
    [J]. SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2008, 30 (02) : 731 - 740
  • [24] Least squares solutions to the rank-constrained matrix approximation problem in the Frobenius norm
    Hongxing Wang
    [J]. Calcolo, 2019, 56
  • [26] Low-rank matrix approximation in the infinity norm
    Gillis, Nicolas
    Shitov, Yaroslav
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2019, 581 : 367 - 382
  • [27] Joint Rank and Positive Semidefinite Constrained Optimization for Projection Matrix
    Li, Qiuwei
    Li, Shuang
    Bai, Huang
    Li, Gang
    Chang, Liping
    [J]. PROCEEDINGS OF THE 2014 9TH IEEE CONFERENCE ON INDUSTRIAL ELECTRONICS AND APPLICATIONS (ICIEA), 2014, : 1049 - 1054
  • [28] SOLUTION OF SYMMETRIC POSITIVE SEMIDEFINITE PROCRUSTES PROBLEM
    Peng, Jingjing
    Wang, Qingwen
    Peng, Zhenyun
    Chen, Zhencheng
    [J]. ELECTRONIC JOURNAL OF LINEAR ALGEBRA, 2019, 35 : 543 - 554
  • [29] Approximation of a Matrix with Positive Elements by a Matrix of a Unit Rank
    Panyukov, Anatoly
    Chaloob, Khalid
    Mezal, Yasir
    [J]. 2018 IEEE SYMPOSIUM ON COMPUTER APPLICATIONS & INDUSTRIAL ELECTRONICS (ISCAIE 2018), 2018, : 234 - 237
  • [30] Sublinear Time Low-Rank Approximation of Positive Semidefinite Matrices
    Musco, Cameron
    Woodruff, David P.
    [J]. 2017 IEEE 58TH ANNUAL SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE (FOCS), 2017, : 672 - 683