Low rank approximation of the symmetric positive semidefinite matrix

被引:6
|
作者
Duan, Xuefeng [1 ]
Li, Jiaofen [1 ]
Wang, Qingwen [2 ]
Zhang, Xinjun [1 ]
机构
[1] Guilin Univ Elect Technol, Coll Math & Computat Sci, Guilin 541004, Peoples R China
[2] Shanghai Univ, Dept Math, Shanghai 200444, Peoples R China
基金
中国国家自然科学基金;
关键词
Low rank approximation; Symmetric positive semidefinite matrix; Unconstrained optimization; Feasible set; Nonlinear conjugate gradient method; GCDS;
D O I
10.1016/j.cam.2013.09.080
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider the low rank approximation of the symmetric positive semidefinite matrix, which arises in machine learning, quantum chemistry and inverse problem. We first characterize the feasible set by X = YYT,Y is an element of R-nxk, and then transform low rank approximation into an unconstrained optimization problem. Finally, we use the nonlinear conjugate gradient method with exact line search to compute the optimal low rank symmetric positive semidefinite approximation of the given matrix. Numerical examples show that the new method is feasible and effective. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:236 / 243
页数:8
相关论文
共 50 条
  • [1] A SPARSE DECOMPOSITION OF LOW RANK SYMMETRIC POSITIVE SEMIDEFINITE MATRICES
    Hou, Thomas Y.
    Li, Qin
    Zhang, Pengchuan
    [J]. MULTISCALE MODELING & SIMULATION, 2017, 15 (01): : 410 - 444
  • [2] Sublinear Time Low-Rank Approximation of Positive Semidefinite Matrices
    Musco, Cameron
    Woodruff, David P.
    [J]. 2017 IEEE 58TH ANNUAL SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE (FOCS), 2017, : 672 - 683
  • [3] Minimum rank positive semidefinite solution to the matrix approximation problem in the spectral norm
    Liu, Xifu
    Luo, Le
    [J]. APPLIED MATHEMATICS LETTERS, 2020, 107
  • [4] Positive Semidefinite Hankel Structured Low Rank Approximation using Vandermonde Decomposition
    Rakshit, Suman
    Khare, Swanand R.
    [J]. 2019 FIFTH INDIAN CONTROL CONFERENCE (ICC), 2019, : 177 - 182
  • [5] Fixed-Rank Approximation of a Positive-Semidefinite Matrix from Streaming Data
    Tropp, Joel A.
    Yurtsever, Alp
    Udell, Madeleine
    Cevher, Volkan
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 30 (NIPS 2017), 2017, 30
  • [6] COMPUTING A NEAREST SYMMETRIC POSITIVE SEMIDEFINITE MATRIX
    HIGHAM, NJ
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 1988, 103 : 103 - 118
  • [7] Deterministic Symmetric Positive Semidefinite Matrix Completion
    Bishopl, William E.
    Byron, M. Yu
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 27 (NIPS 2014), 2014, 27
  • [8] A Positive Semidefinite Approximation of the Symmetric Traveling Salesman Polytope
    Ellen Veomett
    [J]. Discrete & Computational Geometry, 2007, 38 : 15 - 28
  • [9] A positive semidefinite approximation of the symmetric traveling salesman polytope
    Veomett, Ellen
    [J]. DISCRETE & COMPUTATIONAL GEOMETRY, 2007, 38 (01) : 15 - 28
  • [10] APPROXIMATION BY A HERMITIAN POSITIVE SEMIDEFINITE TOEPLITZ MATRIX
    SUFFRIDGE, TJ
    HAYDEN, TL
    [J]. SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 1993, 14 (03) : 721 - 734