A positive semidefinite approximation of the symmetric traveling salesman polytope

被引:2
|
作者
Veomett, Ellen [1 ]
机构
[1] Univ Michigan, Dept Math, Ann Arbor, MI 48109 USA
关键词
D O I
10.1007/s00454-007-1324-9
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
For a convex body B in a vector space V, we construct its approximation P-k, k = 1, 2,..., using an intersection of a cone of positive semidefinite quadratic forms with an affine subspace. We show that Pk is contained in B for each k. When B is the Symmetric Traveling Salesman Polytope on n cities T-n we show that the scaling of Pk by n/k + O(1/n) contains T, for k <= [n/2]. Membership for Pk is computable in time polynomial in n (of degree linear in k). We also discuss facets of Tn that lie on the boundary of Pk and we use eigenvalues to evaluate our bounds.
引用
收藏
页码:15 / 28
页数:14
相关论文
共 50 条
  • [1] A Positive Semidefinite Approximation of the Symmetric Traveling Salesman Polytope
    Ellen Veomett
    [J]. Discrete & Computational Geometry, 2007, 38 : 15 - 28
  • [2] The symmetric traveling salesman polytope revisited
    Naddef, D
    Pochet, Y
    [J]. MATHEMATICS OF OPERATIONS RESEARCH, 2001, 26 (04) : 700 - 722
  • [3] On the graphical relaxation of the symmetric traveling salesman polytope
    Oswald, Marcus
    Reinelt, Gerhard
    Theis, Dirk Oliver
    [J]. MATHEMATICAL PROGRAMMING, 2007, 110 (01) : 175 - 193
  • [4] FACET IDENTIFICATION FOR THE SYMMETRIC TRAVELING SALESMAN POLYTOPE
    PADBERG, M
    RINALDI, G
    [J]. MATHEMATICAL PROGRAMMING, 1990, 47 (02) : 219 - 257
  • [5] On the graphical relaxation of the symmetric traveling salesman polytope
    Marcus Oswald
    Gerhard Reinelt
    Dirk Oliver Theis
    [J]. Mathematical Programming, 2007, 110 : 175 - 193
  • [6] The domino inequalities: facets for the symmetric traveling salesman polytope
    Denis Naddef
    Emmanuel Wild
    [J]. Mathematical Programming, 2003, 98 : 223 - 251
  • [7] A procedure of facet composition for the Symmetric Traveling Salesman Polytope
    Maurras, JFO
    Nguyen, VH
    [J]. COMBINATORIAL OPTIMIZATION - EUREKA, YOU SHRINK: PAPERS DEDICATED TO JACK EDMONDS, 2003, 2570 : 134 - 146
  • [8] The domino inequalities: facets for the symmetric traveling salesman polytope
    Naddef, D
    Wild, E
    [J]. MATHEMATICAL PROGRAMMING, 2003, 98 (1-3) : 223 - 251
  • [9] A bound of 4 for the diameter of the symmetric traveling salesman polytope
    Rispoli, FJ
    Cosares, S
    [J]. SIAM JOURNAL ON DISCRETE MATHEMATICS, 1998, 11 (03) : 373 - 380
  • [10] Semidefinite programming methods for the symmetric traveling salesman problem
    Cvetkovic, D
    Cangalovic, M
    Kovacevic-Vujcic, V
    [J]. INTEGER PROGRAMMING AND COMBINATORIAL OPTIMIZATION, 1999, 1610 : 126 - 136