Low rank approximation of the symmetric positive semidefinite matrix

被引:6
|
作者
Duan, Xuefeng [1 ]
Li, Jiaofen [1 ]
Wang, Qingwen [2 ]
Zhang, Xinjun [1 ]
机构
[1] Guilin Univ Elect Technol, Coll Math & Computat Sci, Guilin 541004, Peoples R China
[2] Shanghai Univ, Dept Math, Shanghai 200444, Peoples R China
基金
中国国家自然科学基金;
关键词
Low rank approximation; Symmetric positive semidefinite matrix; Unconstrained optimization; Feasible set; Nonlinear conjugate gradient method; GCDS;
D O I
10.1016/j.cam.2013.09.080
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider the low rank approximation of the symmetric positive semidefinite matrix, which arises in machine learning, quantum chemistry and inverse problem. We first characterize the feasible set by X = YYT,Y is an element of R-nxk, and then transform low rank approximation into an unconstrained optimization problem. Finally, we use the nonlinear conjugate gradient method with exact line search to compute the optimal low rank symmetric positive semidefinite approximation of the given matrix. Numerical examples show that the new method is feasible and effective. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:236 / 243
页数:8
相关论文
共 50 条
  • [41] Low-Rank Approximation of Circulant Matrix to a Noisy Matrix
    Suliman Al-Homidan
    [J]. Arabian Journal for Science and Engineering, 2021, 46 : 3287 - 3292
  • [42] Low-Rank Approximation of Circulant Matrix to a Noisy Matrix
    Al-Homidan, Suliman
    [J]. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING, 2021, 46 (04) : 3287 - 3292
  • [43] Polytopes of Minimum Positive Semidefinite Rank
    Gouveia, Joao
    Robinson, Richard Z.
    Thomas, Rekha R.
    [J]. DISCRETE & COMPUTATIONAL GEOMETRY, 2013, 50 (03) : 679 - 699
  • [44] Polytopes of Minimum Positive Semidefinite Rank
    João Gouveia
    Richard Z. Robinson
    Rekha R. Thomas
    [J]. Discrete & Computational Geometry, 2013, 50 : 679 - 699
  • [45] Computational Complexity of Decomposing a Symmetric Matrix as a Sum of Positive Semidefinite and Diagonal Matrices
    Tuncel, Levent
    Vavasis, Stephen A.
    Xu, Jingye
    [J]. FOUNDATIONS OF COMPUTATIONAL MATHEMATICS, 2023,
  • [46] SYMMETRIC AND ANTIPERSYMMETRIC EXTREMAL RANK SOLUTIONS FOR LINEAR MATRIX EQUATIONS AND THEIR APPROXIMATION
    Xiao, Qingfeng
    Feng, Tianxiang
    Zhang, Zhongzhi
    [J]. COLLOQUIUM MATHEMATICUM, 2017, 148 (01) : 13 - 26
  • [47] RANDOMIZED LOW-RANK APPROXIMATION FOR SYMMETRIC INDEFINITE MATRICES
    Nakatsukasa, Yuji
    Park, Taejun
    [J]. SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2023, 44 (03) : 1370 - 1392
  • [48] Approximation Schemes for Low-rank Binary Matrix Approximation Problems
    Fomin, Fedor, V
    Golovach, Petr A.
    Lokshtanov, Daniel
    Panolan, Fahad
    Saurabh, Saket
    [J]. ACM TRANSACTIONS ON ALGORITHMS, 2020, 16 (01)
  • [49] CHARACTERIZATION OF A POSITIVE SEMIDEFINITE MATRIX
    FAREBROTHER, RW
    [J]. ECONOMETRIC THEORY, 1993, 9 (02) : 323 - 324
  • [50] LOW-RANK APPROXIMATION AND COMPLETION OF POSITIVE TENSORS
    Aswani, Anil
    [J]. SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2016, 37 (03) : 1337 - 1364