A lower bound for minimum positive semidefinite rank by constructing an OS-vertex set for a given graph

被引:0
|
作者
Lei, Li [1 ,2 ]
Huang, Ting-Zhu [1 ]
机构
[1] Univ Elect Sci & Technol China, Sch Math Sci, Chengdu 611731, Sichuan, Peoples R China
[2] E China Inst Technol, Sch Math & Informat Sci, Fuzhou 344000, Peoples R China
关键词
OS-vertex set; minimum rank; positive semidefinite matrix; graph; MATRICES;
D O I
暂无
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Let S(G) denote a class of positive semipositive matrices associated with the given graph G, and msr(G) be the minimum rank of matrices among S(G). A lower bound of msr(G) given in Jiang, Mitchell and Narayan [Unitary matrix digraphs and minimum semidefinite rank, Linear Alg. Appl., 428(2008): 1685-1695] for bipartite graph is generalized, to any graph. Moreover, a method to construct an OS-vertex set is proposed.
引用
收藏
页码:1873 / 1878
页数:6
相关论文
共 6 条
  • [1] A new lower bound for the positive semidefinite minimum rank of a graph
    Zimmer, Andrew M.
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2013, 438 (03) : 1095 - 1112
  • [2] ON THE MINIMUM RANK AMONG POSITIVE SEMIDEFINITE MATRICES WITH A GIVEN GRAPH
    Booth, Matthew
    Hackney, Philip
    Harris, Benjamin
    Johnson, Charles R.
    Lay, Margaret
    Mitchell, Lon H.
    Narayan, Sivaram K.
    Pascoe, Amanda
    Steinmetz, Kelly
    Sutton, Brian D.
    Wang, Wendy
    [J]. SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2008, 30 (02) : 731 - 740
  • [3] A Note on a Lower Bound on the Minimum Rank of a Positive Semidefinite Hankel Matrix Rank Minimization Problem
    Xu, Yi
    Ren, Xiaorong
    Yan, Xihong
    [J]. MATHEMATICAL PROBLEMS IN ENGINEERING, 2021, 2021
  • [4] A Lower Bound on the Positive Semidefinite Rank of Convex Bodies
    Fawzi, Hamza
    El Din, Mohab Safey
    [J]. SIAM JOURNAL ON APPLIED ALGEBRA AND GEOMETRY, 2018, 2 (01): : 126 - 139
  • [5] A lower bound on the average size of a connected vertex set of a graph
    Vince, Andrew
    [J]. JOURNAL OF COMBINATORIAL THEORY SERIES B, 2022, 152 : 153 - 170
  • [6] Approximating maximum stable set and minimum graph coloring problems with the positive semidefinite relaxation
    Benson, SJ
    Ye, Y
    [J]. COMPLEMENTARITY: APPLICATIONS, ALGORITHMS AND EXTENSIONS, 2001, 50 : 1 - 17