A Note on a Lower Bound on the Minimum Rank of a Positive Semidefinite Hankel Matrix Rank Minimization Problem

被引:0
|
作者
Xu, Yi [1 ,2 ]
Ren, Xiaorong [3 ]
Yan, Xihong [3 ]
机构
[1] Southeast Univ, Inst Math, Nanjing 210096, Jiangsu, Peoples R China
[2] Nanjing Ctr Appl Math, Nanjing, Peoples R China
[3] Taiyuan Normal Univ, Dept Math, Jinzhong 030619, Shanxi, Peoples R China
基金
中国国家自然科学基金;
关键词
Compendex;
D O I
10.1155/2021/2524016
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This paper investigates the problem of approximating the global minimum of a positive semidefinite Hankel matrix minimization problem with linear constraints. We provide a lower bound on the objective of minimizing the rank of the Hankel matrix in the problem based on conclusions from nonnegative polynomials, semi-infinite programming, and the dual theorem. We prove that the lower bound is almost half of the number of linear constraints of the optimization problem.
引用
收藏
页数:6
相关论文
共 50 条
  • [21] Four-dimensional polytopes of minimum positive semidefinite rank
    Gouveia, Joao
    Pashkovich, Kanstanstin
    Robinson, Richard Z.
    Thomas, Rekha R.
    [J]. JOURNAL OF COMBINATORIAL THEORY SERIES A, 2017, 145 : 184 - 226
  • [22] ON THE MINIMUM RANK AMONG POSITIVE SEMIDEFINITE MATRICES WITH A GIVEN GRAPH
    Booth, Matthew
    Hackney, Philip
    Harris, Benjamin
    Johnson, Charles R.
    Lay, Margaret
    Mitchell, Lon H.
    Narayan, Sivaram K.
    Pascoe, Amanda
    Steinmetz, Kelly
    Sutton, Brian D.
    Wang, Wendy
    [J]. SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2008, 30 (02) : 731 - 740
  • [23] ORTHOGONAL REPRESENTATIONS, PROJECTIVE RANK, AND FRACTIONAL MINIMUM POSITIVE SEMIDEFINITE RANK: CONNECTIONS AND NEW DIRECTIONS
    Hogben, Leslie
    Palmowski, Kevin F.
    Roberson, David E.
    Severini, Simone
    [J]. ELECTRONIC JOURNAL OF LINEAR ALGEBRA, 2017, 32 : 98 - 115
  • [24] Positive Semidefinite Hankel Structured Low Rank Approximation using Vandermonde Decomposition
    Rakshit, Suman
    Khare, Swanand R.
    [J]. 2019 FIFTH INDIAN CONTROL CONFERENCE (ICC), 2019, : 177 - 182
  • [25] Completely positive semidefinite rank
    Anupam Prakash
    Jamie Sikora
    Antonios Varvitsiotis
    Zhaohui Wei
    [J]. Mathematical Programming, 2018, 171 : 397 - 431
  • [26] Completely positive semidefinite rank
    Prakash, Anupam
    Sikora, Jamie
    Varvitsiotis, Antonios
    Wei, Zhaohui
    [J]. MATHEMATICAL PROGRAMMING, 2018, 171 (1-2) : 397 - 431
  • [27] On the minimum semidefinite rank of a simple graph
    Booth, Matthew
    Hackney, Philip
    Harris, Benjamin
    Johnson, Charles R.
    Lay, Margaret
    Lenker, Terry D.
    Mitchell, Lon H.
    Narayan, Sivaram K.
    Pascoe, Amanda
    Sutton, Brian D.
    [J]. LINEAR & MULTILINEAR ALGEBRA, 2011, 59 (05): : 483 - 506
  • [28] On the minimum semidefinite rank of signed graphs
    Matar, Nancy
    Mitchell, Lon H.
    Narayan, Sivaram K.
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2022, 642 : 73 - 85
  • [29] Joint Rank and Positive Semidefinite Constrained Optimization for Projection Matrix
    Li, Qiuwei
    Li, Shuang
    Bai, Huang
    Li, Gang
    Chang, Liping
    [J]. PROCEEDINGS OF THE 2014 9TH IEEE CONFERENCE ON INDUSTRIAL ELECTRONICS AND APPLICATIONS (ICIEA), 2014, : 1049 - 1054
  • [30] Bounds on minimum semidefinite rank of graphs
    Narayan, Sivaram K.
    Sharawi, Yousra
    [J]. LINEAR & MULTILINEAR ALGEBRA, 2015, 63 (04): : 774 - 787