ORTHOGONAL REPRESENTATIONS, PROJECTIVE RANK, AND FRACTIONAL MINIMUM POSITIVE SEMIDEFINITE RANK: CONNECTIONS AND NEW DIRECTIONS

被引:6
|
作者
Hogben, Leslie [1 ,2 ]
Palmowski, Kevin F. [1 ]
Roberson, David E. [3 ]
Severini, Simone [4 ]
机构
[1] Iowa State Univ, Dept Math, Ames, IA 50011 USA
[2] Amer Inst Math, 600 E Brokaw Rd, San Jose, CA 95112 USA
[3] Nanyang Technol Univ, Divis Math Sci, SPMS MAS-03-01,21 Nanyang Link, Singapore 637371, Singapore
[4] UCL, Dept Comp Sci, Gower St, London WC1E 6BT, England
来源
关键词
Projective rank; Orthogonal representation; Minimum positive semidefinite rank; Fractional; Tsirelson's problem; Graph; Matrix; QUANTUM; GRAPH;
D O I
10.13001/1081-3810.3102
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Fractional minimum positive semidefinite rank is defined from gamma-fold faithful orthogonal representations and it is shown that the projective rank of any graph equals the fractional minimum positive semidefinite rank of its complement. An gamma-fold version of the traditional definition of minimum positive semidefinite rank of a graph using Hermitian matrices that fit the graph is also presented. This paper also introduces gamma-fold orthogonal representations of graphs and formalizes the understanding of projective rank as fractional orthogonal rank. Connections of these concepts to quantum theory, including Tsirelson's problem, are discussed.
引用
收藏
页码:98 / 115
页数:18
相关论文
共 50 条
  • [1] Polytopes of Minimum Positive Semidefinite Rank
    João Gouveia
    Richard Z. Robinson
    Rekha R. Thomas
    [J]. Discrete & Computational Geometry, 2013, 50 : 679 - 699
  • [2] Polytopes of Minimum Positive Semidefinite Rank
    Gouveia, Joao
    Robinson, Richard Z.
    Thomas, Rekha R.
    [J]. DISCRETE & COMPUTATIONAL GEOMETRY, 2013, 50 (03) : 679 - 699
  • [3] A new lower bound for the positive semidefinite minimum rank of a graph
    Zimmer, Andrew M.
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2013, 438 (03) : 1095 - 1112
  • [4] Orthogonal representations, minimum rank, and graph complements
    Hogben, Leslie
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2008, 428 (11-12) : 2560 - 2568
  • [5] Positive semidefinite rank
    Hamza Fawzi
    João Gouveia
    Pablo A. Parrilo
    Richard Z. Robinson
    Rekha R. Thomas
    [J]. Mathematical Programming, 2015, 153 : 133 - 177
  • [6] Positive semidefinite rank
    Fawzi, Hamza
    Gouveia, Joao
    Parrilo, Pablo A.
    Robinson, Richard Z.
    Thomas, Rekha R.
    [J]. MATHEMATICAL PROGRAMMING, 2015, 153 (01) : 133 - 177
  • [7] Four-dimensional polytopes of minimum positive semidefinite rank
    Gouveia, Joao
    Pashkovich, Kanstanstin
    Robinson, Richard Z.
    Thomas, Rekha R.
    [J]. JOURNAL OF COMBINATORIAL THEORY SERIES A, 2017, 145 : 184 - 226
  • [8] A NOTE ON THE POSITIVE SEMIDEFINITE MINIMUM RANK OF A SIGN PATTERN MATRIX
    Cai, Xinzhong
    Wang, Xinmao
    [J]. ELECTRONIC JOURNAL OF LINEAR ALGEBRA, 2013, 26 : 345 - 356
  • [9] ON THE MINIMUM RANK AMONG POSITIVE SEMIDEFINITE MATRICES WITH A GIVEN GRAPH
    Booth, Matthew
    Hackney, Philip
    Harris, Benjamin
    Johnson, Charles R.
    Lay, Margaret
    Mitchell, Lon H.
    Narayan, Sivaram K.
    Pascoe, Amanda
    Steinmetz, Kelly
    Sutton, Brian D.
    Wang, Wendy
    [J]. SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2008, 30 (02) : 731 - 740
  • [10] A Note on a Lower Bound on the Minimum Rank of a Positive Semidefinite Hankel Matrix Rank Minimization Problem
    Xu, Yi
    Ren, Xiaorong
    Yan, Xihong
    [J]. MATHEMATICAL PROBLEMS IN ENGINEERING, 2021, 2021