ORTHOGONAL REPRESENTATIONS, PROJECTIVE RANK, AND FRACTIONAL MINIMUM POSITIVE SEMIDEFINITE RANK: CONNECTIONS AND NEW DIRECTIONS

被引:6
|
作者
Hogben, Leslie [1 ,2 ]
Palmowski, Kevin F. [1 ]
Roberson, David E. [3 ]
Severini, Simone [4 ]
机构
[1] Iowa State Univ, Dept Math, Ames, IA 50011 USA
[2] Amer Inst Math, 600 E Brokaw Rd, San Jose, CA 95112 USA
[3] Nanyang Technol Univ, Divis Math Sci, SPMS MAS-03-01,21 Nanyang Link, Singapore 637371, Singapore
[4] UCL, Dept Comp Sci, Gower St, London WC1E 6BT, England
来源
关键词
Projective rank; Orthogonal representation; Minimum positive semidefinite rank; Fractional; Tsirelson's problem; Graph; Matrix; QUANTUM; GRAPH;
D O I
10.13001/1081-3810.3102
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Fractional minimum positive semidefinite rank is defined from gamma-fold faithful orthogonal representations and it is shown that the projective rank of any graph equals the fractional minimum positive semidefinite rank of its complement. An gamma-fold version of the traditional definition of minimum positive semidefinite rank of a graph using Hermitian matrices that fit the graph is also presented. This paper also introduces gamma-fold orthogonal representations of graphs and formalizes the understanding of projective rank as fractional orthogonal rank. Connections of these concepts to quantum theory, including Tsirelson's problem, are discussed.
引用
收藏
页码:98 / 115
页数:18
相关论文
共 50 条
  • [41] Rank 3 rigid representations of projective fundamental groups
    Langer, Adrian
    Simpson, Carlos
    [J]. COMPOSITIO MATHEMATICA, 2018, 154 (07) : 1534 - 1570
  • [42] A lower bound for minimum positive semidefinite rank by constructing an OS-vertex set for a given graph
    Lei, Li
    Huang, Ting-Zhu
    [J]. INFORMATION-AN INTERNATIONAL INTERDISCIPLINARY JOURNAL, 2011, 14 (06): : 1873 - 1878
  • [43] Symmetry Breaking for Representations of Rank One Orthogonal Groups
    Kobayashi, T.
    Speh, B.
    [J]. MEMOIRS OF THE AMERICAN MATHEMATICAL SOCIETY, 2015, 238 (1126) : 1 - +
  • [44] A Remark on the Rank of Positive Semidefinite Matrices Subject to Affine Constraints
    A. Barvinok
    [J]. Discrete & Computational Geometry, 2001, 25 : 23 - 31
  • [45] A remark on the rank of positive semidefinite matrices subject to affine constraints
    Barvinok, A
    [J]. DISCRETE & COMPUTATIONAL GEOMETRY, 2001, 25 (01) : 23 - 31
  • [46] Joint Rank and Positive Semidefinite Constrained Optimization for Projection Matrix
    Li, Qiuwei
    Li, Shuang
    Bai, Huang
    Li, Gang
    Chang, Liping
    [J]. PROCEEDINGS OF THE 2014 9TH IEEE CONFERENCE ON INDUSTRIAL ELECTRONICS AND APPLICATIONS (ICIEA), 2014, : 1049 - 1054
  • [47] SPARSITY PATTERNS WITH HIGH RANK EXTREMAL POSITIVE SEMIDEFINITE MATRICES
    HELTON, JW
    LAM, D
    WOERDEMAN, HJ
    [J]. SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 1994, 15 (01) : 299 - 312
  • [48] Correlation matrices, Clifford algebras, and completely positive semidefinite rank
    Prakash, Anupam
    Varvitsiotis, Antonios
    [J]. LINEAR & MULTILINEAR ALGEBRA, 2020, 68 (05): : 1039 - 1056
  • [49] A SPARSE DECOMPOSITION OF LOW RANK SYMMETRIC POSITIVE SEMIDEFINITE MATRICES
    Hou, Thomas Y.
    Li, Qin
    Zhang, Pengchuan
    [J]. MULTISCALE MODELING & SIMULATION, 2017, 15 (01): : 410 - 444
  • [50] LOW-RANK OPTIMIZATION ON THE CONE OF POSITIVE SEMIDEFINITE MATRICES
    Journee, M.
    Bach, F.
    Absil, P. -A.
    Sepulchre, R.
    [J]. SIAM JOURNAL ON OPTIMIZATION, 2010, 20 (05) : 2327 - 2351