ON THE MINIMUM RANK AMONG POSITIVE SEMIDEFINITE MATRICES WITH A GIVEN GRAPH

被引:46
|
作者
Booth, Matthew [7 ]
Hackney, Philip [2 ]
Harris, Benjamin [3 ]
Johnson, Charles R. [4 ]
Lay, Margaret [5 ]
Mitchell, Lon H. [6 ]
Narayan, Sivaram K. [1 ]
Pascoe, Amanda [8 ]
Steinmetz, Kelly [9 ]
Sutton, Brian D. [10 ]
Wang, Wendy [11 ]
机构
[1] Cent Michigan Univ, Dept Math, Mt Pleasant, MI 48859 USA
[2] Purdue Univ, Dept Math, W Lafayette, IN 47907 USA
[3] Brown Univ, Dept Math, Providence, RI 02912 USA
[4] Coll William & Mary, Dept Math, Williamsburg, VA 23187 USA
[5] Grinnell Coll, Dept Math & Comp Sci, Grinnell, IA 50112 USA
[6] Virginia Commonwealth Univ, Dept Math, Richmond, VA 23284 USA
[7] Oberlin Coll, Dept Math, Oberlin, OH 44074 USA
[8] Furman Univ, Dept Math, Greenville, SC 29613 USA
[9] Indiana Univ, Dept Math, Bloomington, IN 47405 USA
[10] Randolph Macon Coll, Dept Math, Ashland, VA 23005 USA
[11] Duke Univ, Dept Math, Durham, NC 27708 USA
基金
美国国家科学基金会;
关键词
rank; positive semidefinite; graph of a matrix;
D O I
10.1137/050629793
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let P(G) be the set of all positive semidefinite matrices whose graph is G, and msr(G) be the minimum rank of all matrices in P(G). Upper and lower bounds for msr(G) are given and used to determine msr(G) for some well-known graphs, including chordal graphs, and for all simple graphs on less than seven vertices.
引用
收藏
页码:731 / 740
页数:10
相关论文
共 50 条
  • [31] RIEMANNIAN METRIC AND GEOMETRIC MEAN FOR POSITIVE SEMIDEFINITE MATRICES OF FIXED RANK
    Bonnabel, Silvere
    Sepulchre, Rodolphe
    SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2009, 31 (03) : 1055 - 1070
  • [32] MINIMUM-RANK POSITIVE SEMIDEFINITE MATRIX COMPLETION WITH CHORDAL PATTERNS AND APPLICATIONS TO SEMIDEFINITE RELAXATIONS
    Jiang X.
    Sun Y.
    Andersen M.S.
    Vandenberghe L.
    Applied Set-Valued Analysis and Optimization, 2023, 5 (02): : 265 - 283
  • [33] Regression on fixed-rank positive semidefinite matrices: A Riemannian approach
    Meyer, Gilles
    Bonnabel, Silvère
    Sepulchre, Rodolphe
    Journal of Machine Learning Research, 2011, 12 : 593 - 625
  • [34] Graph coloring and semidefinite rank
    Mirka, Renee
    Smedira, Devin
    Williamson, David P.
    MATHEMATICAL PROGRAMMING, 2024, 206 (1-2) : 577 - 605
  • [35] Graph Coloring and Semidefinite Rank
    Mirka, Renee
    Smedira, Devin
    Williamson, David P.
    INTEGER PROGRAMMING AND COMBINATORIAL OPTIMIZATION, IPCO 2022, 2022, 13265 : 387 - 401
  • [36] EMBEDDED GEOMETRY OF THE SET OF SYMMETRIC POSITIVE SEMIDEFINITE MATRICES OF FIXED RANK
    Vandereycken, Bart
    Absil, P-A.
    Vandewalle, Stefan
    2009 IEEE/SP 15TH WORKSHOP ON STATISTICAL SIGNAL PROCESSING, VOLS 1 AND 2, 2009, : 389 - +
  • [37] Regression on Fixed-Rank Positive Semidefinite Matrices: A Riemannian Approach
    Meyer, Gilles
    Bonnabel, Silvere
    Sepulchre, Rodolphe
    JOURNAL OF MACHINE LEARNING RESEARCH, 2011, 12 : 593 - 625
  • [38] ENUMERATION OF MATRICES OF GIVEN RANK WITH SUB-MATRICES OF GIVEN RANK
    CARLITZ, L
    HODGES, JH
    LINEAR ALGEBRA AND ITS APPLICATIONS, 1977, 16 (03) : 285 - 291
  • [39] Sublinear Time Low-Rank Approximation of Positive Semidefinite Matrices
    Musco, Cameron
    Woodruff, David P.
    2017 IEEE 58TH ANNUAL SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE (FOCS), 2017, : 672 - 683
  • [40] ORTHOGONAL REPRESENTATIONS, PROJECTIVE RANK, AND FRACTIONAL MINIMUM POSITIVE SEMIDEFINITE RANK: CONNECTIONS AND NEW DIRECTIONS
    Hogben, Leslie
    Palmowski, Kevin F.
    Roberson, David E.
    Severini, Simone
    ELECTRONIC JOURNAL OF LINEAR ALGEBRA, 2017, 32 : 98 - 115