Unitary matrix digraphs and minimum semidefinite rank
被引:16
|
作者:
Jiang, Yunjiang
论文数: 0引用数: 0
h-index: 0
机构:
Cent Michigan Univ, Dept Math, Mt Pleasant, MI 48859 USA
Virginia Commonwealth Univ, Dept Math, Richmond, VA 23284 USA
Univ Georgia, Dept Math, Athens, GA 30602 USACent Michigan Univ, Dept Math, Mt Pleasant, MI 48859 USA
Jiang, Yunjiang
[1
,2
,3
]
Mitchell, Lon H.
论文数: 0引用数: 0
h-index: 0
机构:
Cent Michigan Univ, Dept Math, Mt Pleasant, MI 48859 USA
Virginia Commonwealth Univ, Dept Math, Richmond, VA 23284 USA
Univ Georgia, Dept Math, Athens, GA 30602 USACent Michigan Univ, Dept Math, Mt Pleasant, MI 48859 USA
Mitchell, Lon H.
[1
,2
,3
]
Narayan, Sivaram K.
论文数: 0引用数: 0
h-index: 0
机构:
Cent Michigan Univ, Dept Math, Mt Pleasant, MI 48859 USA
Virginia Commonwealth Univ, Dept Math, Richmond, VA 23284 USA
Univ Georgia, Dept Math, Athens, GA 30602 USACent Michigan Univ, Dept Math, Mt Pleasant, MI 48859 USA
Narayan, Sivaram K.
[1
,2
,3
]
机构:
[1] Cent Michigan Univ, Dept Math, Mt Pleasant, MI 48859 USA
[2] Virginia Commonwealth Univ, Dept Math, Richmond, VA 23284 USA
For an undirected simple graph G, the minimum rank among all positive semidefinite matrices with graph G is called the minimum semidefinite rank (msr) of G. In this paper, we show that the msr of a given graph may be determined from the msr of a related bipartite graph. Finding the msr of a given bipartite graph is then shown to be equivalent to determining which digraphs encode the zero/nonzero pattern of a unitary matrix. We provide an algorithm to construct unitary matrices with a certain pattern, and use previous results to give a lower bound for the msr of certain bipartite graphs. (c) 2007 Elsevier Inc. All rights reserved.