Unitary matrix digraphs and minimum semidefinite rank

被引:16
|
作者
Jiang, Yunjiang [1 ,2 ,3 ]
Mitchell, Lon H. [1 ,2 ,3 ]
Narayan, Sivaram K. [1 ,2 ,3 ]
机构
[1] Cent Michigan Univ, Dept Math, Mt Pleasant, MI 48859 USA
[2] Virginia Commonwealth Univ, Dept Math, Richmond, VA 23284 USA
[3] Univ Georgia, Dept Math, Athens, GA 30602 USA
关键词
rank; positive semidefinite; digraph; unitary; graph; quadrangular;
D O I
10.1016/j.laa.2007.10.031
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For an undirected simple graph G, the minimum rank among all positive semidefinite matrices with graph G is called the minimum semidefinite rank (msr) of G. In this paper, we show that the msr of a given graph may be determined from the msr of a related bipartite graph. Finding the msr of a given bipartite graph is then shown to be equivalent to determining which digraphs encode the zero/nonzero pattern of a unitary matrix. We provide an algorithm to construct unitary matrices with a certain pattern, and use previous results to give a lower bound for the msr of certain bipartite graphs. (c) 2007 Elsevier Inc. All rights reserved.
引用
收藏
页码:1685 / 1695
页数:11
相关论文
共 50 条
  • [31] Dynamics of a rank-one multiplicative perturbation of a unitary matrix
    Dubach, Guillaume
    Reker, Jana
    [J]. RANDOM MATRICES-THEORY AND APPLICATIONS, 2024, 13 (02)
  • [32] Positive semidefinite rank
    Hamza Fawzi
    João Gouveia
    Pablo A. Parrilo
    Richard Z. Robinson
    Rekha R. Thomas
    [J]. Mathematical Programming, 2015, 153 : 133 - 177
  • [33] Positive semidefinite rank
    Fawzi, Hamza
    Gouveia, Joao
    Parrilo, Pablo A.
    Robinson, Richard Z.
    Thomas, Rekha R.
    [J]. MATHEMATICAL PROGRAMMING, 2015, 153 (01) : 133 - 177
  • [34] Low-Rank Positive Semidefinite Matrix Recovery From Corrupted Rank-One Measurements
    Li, Yuanxin
    Sun, Yue
    Chi, Yuejie
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2017, 65 (02) : 397 - 408
  • [35] A new graph parameter related to bounded rank positive semidefinite matrix completions
    Laurent, Monique
    Varvitsiotis, Antonios
    [J]. MATHEMATICAL PROGRAMMING, 2014, 145 (1-2) : 291 - 325
  • [36] A new graph parameter related to bounded rank positive semidefinite matrix completions
    Monique Laurent
    Antonios Varvitsiotis
    [J]. Mathematical Programming, 2014, 145 : 291 - 325
  • [37] MINIMUM BROADCAST DIGRAPHS
    LIESTMAN, AL
    PETERS, JG
    [J]. DISCRETE APPLIED MATHEMATICS, 1992, 37-8 : 401 - 419
  • [38] SEMIDEFINITE REPRESENTATIONS OF GAUGE FUNCTIONS FOR STRUCTURED LOW-RANK MATRIX DECOMPOSITION
    Chao, Hsiao-Han
    Vandenberghe, Lieven
    [J]. SIAM JOURNAL ON OPTIMIZATION, 2017, 27 (03) : 1362 - 1389
  • [39] Positive Semidefinite Matrix Factorization: A Connection With Phase Retrieval and Affine Rank Minimization
    Lahat, Dana
    Lang, Yanbin
    Tan, Vincent Y. F.
    Fevotte, Cedric
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2021, 69 : 3059 - 3074
  • [40] Rational realizations of the minimum rank of a sign pattern matrix
    Arav, M
    Hall, FJ
    Koyuncu, S
    Li, ZS
    Rao, B
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2005, 409 : 111 - 125