Propagation tree decompositions and linearly independent vertices

被引:0
|
作者
Mitchell, Lon [1 ]
机构
[1] Univ S Florida, St Petersburg, FL 33701 USA
关键词
Propagation tree decompositions; Zero-forcing; OS-sets; Minimum semidefinite rank;
D O I
10.1016/j.tcs.2020.10.016
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We explore the relationship between propagation tree decompositions of a graph of a given size and the OS-sets of the same size, showing that each can generate the other. We give a short constructive proof that the OS-sets are in bijective correspondence with a subset of the propagation tree decompositions. (C) 2020 Elsevier B.V. All rights reserved.
引用
下载
收藏
页码:159 / 162
页数:4
相关论文
共 50 条
  • [1] Linearly independent vertices and minimum semidefinite rank
    Hackney, Philip
    Harris, Benjamin
    Lay, Margaret
    Mitchell, Lon H.
    Narayan, Sivaram K.
    Pascoe, Amanda
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2009, 431 (08) : 1105 - 1115
  • [2] A heuristic algorithm using tree decompositions for the maximum happy vertices problem
    Carpentier, Louis
    Jooken, Jorik
    Goedgebeur, Jan
    JOURNAL OF HEURISTICS, 2024, 30 (1-2) : 67 - 107
  • [3] A heuristic algorithm using tree decompositions for the maximum happy vertices problem
    Louis Carpentier
    Jorik Jooken
    Jan Goedgebeur
    Journal of Heuristics, 2024, 30 : 67 - 107
  • [4] GRAPH DECOMPOSITIONS WITHOUT ISOLATED VERTICES
    ENOMOTO, H
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 1995, 63 (01) : 111 - 124
  • [5] Directed Tree Decompositions
    Kerkhoff, Sebastian
    Schneider, Friedrich Martin
    FORMAL CONCEPT ANALYSIS, ICFCA 2014, 2014, 8478 : 80 - 95
  • [6] Definable tree decompositions
    Grohe, Martin
    TWENTY-THIRD ANNUAL IEEE SYMPOSIUM ON LOGIC IN COMPUTER SCIENCE, PROCEEDINGS, 2008, : 406 - 417
  • [7] TREE DECOMPOSITIONS OF MULTIGRAPHS
    SHI Minyong(Department of Computer Science and Technology
    Journal of Systems Science & Complexity, 1999, (03) : 231 - 237
  • [8] Convolutions. Spectral decompositions over different vertices
    Vinogradov A.I.
    Journal of Mathematical Sciences, 1998, 88 (2) : 190 - 201
  • [9] Graph decompositions without isolated vertices .3.
    Enomoto, H
    Matsunaga, S
    JOURNAL OF GRAPH THEORY, 1997, 24 (02) : 155 - 164
  • [10] Graph decompositions without isolated vertices .2.
    Enomoto, H
    Matsunaga, S
    JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 1997, 49 (01) : 161 - 180