Linearly independent vertices and minimum semidefinite rank

被引:34
|
作者
Hackney, Philip [2 ]
Harris, Benjamin [3 ]
Lay, Margaret [4 ]
Mitchell, Lon H. [5 ]
Narayan, Sivaram K. [1 ]
Pascoe, Amanda [6 ]
机构
[1] Cent Michigan Univ, Dept Math, Mt Pleasant, MI 48859 USA
[2] Purdue Univ, Dept Math, W Lafayette, IN 47907 USA
[3] Brown Univ, Dept Math, Providence, RI 02912 USA
[4] Grinnell Coll, Dept Math & Comp Sci, Grinnell, IA 50112 USA
[5] Virginia Commonwealth Univ, Dept Math, Richmond, VA 23284 USA
[6] Furman Univ, Dept Math, Greenville, SC 29613 USA
基金
美国国家科学基金会;
关键词
Minimum semidefinite rank; Join; Linearly independent vertices; GRAPHS; REPRESENTATIONS; MATRICES;
D O I
10.1016/j.laa.2009.03.030
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the minimum semidefinite rank of a graph using vector representations of the graph and of certain subgraphs. We present a sufficient condition for when the vectors corresponding to a set of vertices of a graph must be linearly independent in any vector representation of that graph, and conjecture that the resulting graph invariant is equal to minimum semidefinite rank. Rotation of vector representations by a unitary matrix allows us to find the minimum semidefinite rank of the join of two graphs. We also improve upon previous results concerning the effect on minimum semidefinite rank of the removal of a vertex. (C) 2009 Elsevier Inc. All rights reserved.
引用
下载
收藏
页码:1105 / 1115
页数:11
相关论文
共 50 条
  • [21] ORTHOGONAL REPRESENTATIONS, PROJECTIVE RANK, AND FRACTIONAL MINIMUM POSITIVE SEMIDEFINITE RANK: CONNECTIONS AND NEW DIRECTIONS
    Hogben, Leslie
    Palmowski, Kevin F.
    Roberson, David E.
    Severini, Simone
    ELECTRONIC JOURNAL OF LINEAR ALGEBRA, 2017, 32 : 98 - 115
  • [22] A Note on a Lower Bound on the Minimum Rank of a Positive Semidefinite Hankel Matrix Rank Minimization Problem
    Xu, Yi
    Ren, Xiaorong
    Yan, Xihong
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2021, 2021
  • [23] Structure of minimum error discrimination for linearly independent states
    Singal, Tanmay
    Kim, Eunsang
    Ghosh, Sibasish
    PHYSICAL REVIEW A, 2019, 99 (05)
  • [24] Minimum rank positive semidefinite solution to the matrix approximation problem in the spectral norm
    Liu, Xifu
    Luo, Le
    APPLIED MATHEMATICS LETTERS, 2020, 107
  • [25] Lower bounds for minimum semidefinite rank from orthogonal removal and chordal supergraphs
    Mitchell, Lon H.
    Narayan, Sivaram K.
    Zimmer, Andrew M.
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2012, 436 (03) : 525 - 536
  • [26] Minimum error discrimination for an ensemble of linearly independent pure states
    Singal, Tanmay
    Ghosh, Sibasish
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2016, 49 (16)
  • [27] Positive semidefinite rank
    Hamza Fawzi
    João Gouveia
    Pablo A. Parrilo
    Richard Z. Robinson
    Rekha R. Thomas
    Mathematical Programming, 2015, 153 : 133 - 177
  • [28] Positive semidefinite rank
    Fawzi, Hamza
    Gouveia, Joao
    Parrilo, Pablo A.
    Robinson, Richard Z.
    Thomas, Rekha R.
    MATHEMATICAL PROGRAMMING, 2015, 153 (01) : 133 - 177
  • [29] Graph coloring and semidefinite rank
    Mirka, Renee
    Smedira, Devin
    Williamson, David P.
    MATHEMATICAL PROGRAMMING, 2024, 206 (1-2) : 577 - 605
  • [30] Graph Coloring and Semidefinite Rank
    Mirka, Renee
    Smedira, Devin
    Williamson, David P.
    INTEGER PROGRAMMING AND COMBINATORIAL OPTIMIZATION, IPCO 2022, 2022, 13265 : 387 - 401