CAFE: an R package for the detection of gross chromosomal abnormalities from gene expression microarray data

被引:2
|
作者
Bollen, Sander [1 ,2 ]
Leddin, Mathias [3 ]
Andrade-Navarro, Miguel A. [1 ]
Mah, Nancy [1 ]
机构
[1] Max Delbruck Ctr Mol Med, Computat Biol & Data Min Grp, D-13125 Berlin, Germany
[2] Univ Utrecht, Grad Sch Life Sci, NL-3584 CG Utrecht, Netherlands
[3] Roche Diagnost GmbH, D-82377 Penzberg, Germany
关键词
STEM-CELLS;
D O I
10.1093/bioinformatics/btu028
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
The current methods available to detect chromosomal abnormalities from DNA microarray expression data are cumbersome and inflexible. CAFE has been developed to alleviate these issues. It is implemented as an R package that analyzes Affymetrix*. CEL files and comes with flexible plotting functions, easing visualization of chromosomal abnormalities.
引用
收藏
页码:1484 / 1485
页数:2
相关论文
共 50 条
  • [31] NormExpression: An R Package to Normalize Gene Expression Data Using Evaluated Methods
    Wu, Zhenfeng
    Liu, Weixiang
    Jin, Xiufeng
    Ji, Haishuo
    Wang, Hua
    Glusman, Gustavo
    Robinson, Max
    Liu, Lin
    Ruan, Jishou
    Gao, Shan
    [J]. FRONTIERS IN GENETICS, 2019, 10
  • [32] Mixture modelling of gene expression data from microarray experiments
    Ghosh, D
    Chinnaiyan, AM
    [J]. BIOINFORMATICS, 2002, 18 (02) : 275 - 286
  • [33] Kernel hierarchical gene clustering from microarray expression data
    Qin, J
    Lewis, DP
    Noble, WS
    [J]. BIOINFORMATICS, 2003, 19 (16) : 2097 - 2104
  • [34] Clustering gene expression signals from retinal microarray data
    Fleury, G
    Hero, A
    Yoshida, S
    Carter, T
    Barlow, C
    Swaroop, A
    [J]. 2002 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOLS I-IV, PROCEEDINGS, 2002, : 4024 - 4027
  • [35] Data mining for gene expression profiles from DNA, microarray
    Cho, SB
    Won, HH
    [J]. INTERNATIONAL JOURNAL OF SOFTWARE ENGINEERING AND KNOWLEDGE ENGINEERING, 2003, 13 (06) : 593 - 608
  • [36] A Top-r Feature Selection Algorithm for Microarray Gene Expression Data
    Sharma, Alok
    Imoto, Seiya
    Miyano, Satoru
    [J]. IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, 2012, 9 (03) : 754 - 764
  • [37] MADE4:: an R package for multivariate analysis of gene expression data
    Culhane, AC
    Thioulouse, J
    Perrière, G
    Higgins, DG
    [J]. BIOINFORMATICS, 2005, 21 (11) : 2789 - 2790
  • [38] Are data from different gene expression microarray platforms comparable?
    Järvinen, AK
    Hautaniemi, S
    Edgren, H
    Auvinen, P
    Saarela, J
    Kallioniemi, OP
    Monni, O
    [J]. GENOMICS, 2004, 83 (06) : 1164 - 1168
  • [39] Microarray Gene Expression Analysis using R
    Petre, I.
    Buiu, C.
    [J]. INTERNATIONAL CONFERENCE ON ADVANCEMENTS OF MEDICINE AND HEALTH CARE THROUGH TECHNOLOGY, MEDITECH 2016, 2017, 59 : 358 - 361
  • [40] Gene ontology driven feature selection from microarray gene expression data
    Qi, Jianlong
    Tang, Jian
    [J]. PROCEEDINGS OF THE 2006 IEEE SYMPOSIUM ON COMPUTATIONAL INTELLIGENCE IN BIOINFORMATICS AND COMPUTATIONAL BIOLOGY, 2006, : 428 - +