Mixture modelling of gene expression data from microarray experiments

被引:121
|
作者
Ghosh, D
Chinnaiyan, AM
机构
[1] Univ Michigan, Sch Publ Hlth, Dept Biostat, Ann Arbor, MI 48109 USA
[2] Univ Michigan, Sch Publ Hlth, Dept Pathol, Ann Arbor, MI 48109 USA
关键词
D O I
10.1093/bioinformatics/18.2.275
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Motivation: Hierarchical clustering is one of the major analytical tools for gene expression data from microarray experiments. A major problem in the interpretation of the output from these procedures is assessing the reliability of the clustering results. We address this issue by developing a mixture model-based approach for the analysis of microarray data. Within this framework, we present novel algorithms for clustering genes and samples. One of the byproducts of our method is a probabilistic measure for the number of true clusters in the data. Results: The proposed methods are illustrated by application to microarray datasets from two cancer studies; one in which malignant melanoma is profiled (Bittner et al., Nature, 406, 536-540, 2000), and the other in which prostate cancer is profiled (Dhanasekaran et al., 2001, submitted).
引用
收藏
页码:275 / 286
页数:12
相关论文
共 50 条
  • [1] Mixture modeling of microarray gene expression data
    Yang Yang
    Adam P Tashman
    Jung Yeon Lee
    Seungtai Yoon
    Wenyang Mao
    Kwangmi Ahn
    Wonkuk Kim
    Nancy R Mendell
    Derek Gordon
    Stephen J Finch
    BMC Proceedings, 1 (Suppl 1)
  • [2] Mixture of linear mixed models for clustering gene expression profiles from repeated microarray experiments
    Celeux, G
    Martin, O
    Lavergne, C
    STATISTICAL MODELLING, 2005, 5 (03) : 243 - 267
  • [3] A mixture model approach for the analysis of microarray gene expression data
    Allison, David B.
    Gadbury, Gary L.
    Heo, Moonseong
    Fernández, José R.
    Lee, Cheol-Koo
    Prolla, Tomas A.
    Weindruch, Richard
    Computational Statistics and Data Analysis, 2002, 38 (05): : 1 - 20
  • [4] Analysis of Microarray Gene Expression Data Using a Mixture Model
    Bartolucci, Al
    Allison, David B.
    Bae, Sejong
    Singh, Karan P.
    MODSIM 2007: INTERNATIONAL CONGRESS ON MODELLING AND SIMULATION: LAND, WATER AND ENVIRONMENTAL MANAGEMENT: INTEGRATED SYSTEMS FOR SUSTAINABILITY, 2007, : 2867 - 2869
  • [5] A mixture model approach for the analysis of microarray gene expression data
    Allison, DB
    Gadbury, GL
    Heo, MS
    Fernández, JR
    Lee, CK
    Prolla, TA
    Weindruch, R
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2002, 39 (01) : 1 - 20
  • [6] Application of Gene Shaving and Mixture Models to Cluster Microarray Gene Expression Data
    Do, K-A.
    McLachlan, G.
    Bean, R.
    Wen, S.
    CANCER INFORMATICS, 2007, 5 : 25 - 43
  • [7] Standards in gene expression microarray experiments
    Salit, Marc
    DNA MICROARRAYS, PART B: DATABASES AND STATISTICS, 2006, 411 : 63 - 78
  • [8] A new class of mixture models for differential gene expression in DNA microarray data
    Chen, Ming-Hui
    Ibrahim, Joseph G.
    Chi, Yueh-Yun
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2008, 138 (02) : 387 - 404
  • [9] Adaptive filtering of microarray gene expression data based on Gaussian mixture decomposition
    Marczyk, Michal
    Jaksik, Roman
    Polanski, Andrzej
    Polanska, Joanna
    BMC BIOINFORMATICS, 2013, 14
  • [10] Adaptive filtering of microarray gene expression data based on Gaussian mixture decomposition
    Michal Marczyk
    Roman Jaksik
    Andrzej Polanski
    Joanna Polanska
    BMC Bioinformatics, 14