Are data from different gene expression microarray platforms comparable?

被引:133
|
作者
Järvinen, AK
Hautaniemi, S
Edgren, H
Auvinen, P
Saarela, J
Kallioniemi, OP
Monni, O
机构
[1] Univ Helsinki, Biomedicum Biochip Ctr, FIN-00014 Helsinki, Finland
[2] Tampere Univ Technol, Inst Signal Proc, FIN-33101 Tampere, Finland
[3] VTT Tech Res Ctr Finland, Turku 20521, Finland
[4] Univ Turku, Turku 20521, Finland
[5] Univ Helsinki, Inst Biotechnol, DNA Microarray Lab, FIN-00014 Helsinki, Finland
[6] Natl Publ Hlth Inst, Dept Mol Med, Helsinki 00290, Finland
基金
芬兰科学院;
关键词
cDNA microarrays; oligonucleotide rnicroarrays; quality control; breast cancer;
D O I
10.1016/j.ygeno.2004.01.004
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Many commercial and custom-made microarray formats are routinely used for large-scale gene expression Surveys. Here, we sought to determine the level of concordance between microarray platforms by analyzing breast cancer cell lines with in situ synthesized oligonucleotide arrays (Affymetrix HG-U95v2), commercial cDNA microarrays (Agilent Human 1 cDNA), and custom-made cDNA microarrays from a sequence-validated 13K cDNA library. Gene expression data from the commercial platforms showed good correlations across the experiments (r = 0.78-0.86), whereas the correlations between the custom-made and either of the two commercial platforms were lower (r = 0.62-0.76). Discrepant findings were due to Clone errors on the custom-made microarrays, old annotations, or unknown causes. Even within platform, there can be several ways to analyze data that may influence the correlation between platforms. Our results indicate that combining data from different microarray platforms is not straightforward. Variability of the data represents a challenge for developing future diagnostic applications of microarrays. (C) 2004 Elsevier Inc. All rights reserved.
引用
收藏
页码:1164 / 1168
页数:5
相关论文
共 50 条
  • [1] Comparisons of gene expression data obtained using different microarray platforms.
    Phang, T
    Soriano, B
    Gaydos, J
    Bhave, SV
    Lapadat, R
    Zerbe, G
    Hoffman, PL
    Hunter, L
    Tabakoff, B
    ALCOHOLISM-CLINICAL AND EXPERIMENTAL RESEARCH, 2004, 28 (05) : 7A - 7A
  • [2] Integrating Expression Data from Different Microarray Platforms in Search of Biomarkers of Radiosensitivity.
    Papiez, Anna
    Finnon, Paul
    Badie, Christophe
    Bouffler, Simon
    Polanska, Joanna
    PROCEEDINGS IWBBIO 2014: INTERNATIONAL WORK-CONFERENCE ON BIOINFORMATICS AND BIOMEDICAL ENGINEERING, VOLS 1 AND 2, 2014, : 484 - 493
  • [3] Evaluation of gene expression measurements from commercial microarray platforms
    Tan, PK
    Downey, TJ
    Spitznagel, EL
    Xu, P
    Fu, D
    Dimitrov, DS
    Lempicki, RA
    Raaka, BM
    Cam, MC
    NUCLEIC ACIDS RESEARCH, 2003, 31 (19) : 5676 - 5684
  • [4] Data mining of hematopoietic stem cell microarray studies reveals a novel stem cell gene expression signature and demonstrates feasibility of integrating data from different labs and different microarray platforms
    Sohal, D.
    Yeatts, A.
    Ye, K.
    Pellagatti, A.
    Zhou, L.
    Pahanish, P.
    Mariadason, J.
    Melnick, A.
    Greally, J.
    Boultwood, J.
    Verma, A.
    BLOOD, 2007, 110 (11) : 87B - 87B
  • [5] Can subtle changes in gene expression be consistently detected with different microarray platforms?
    Pedotti, Paola
    't Hoen, Peter A. C.
    Vreugdenhil, Erno
    Schenk, Geert J.
    Vossen, Rolf Ham
    Ariyurek, Yavuz
    de Hollander, Mattias
    Kuiper, Rowan
    van Ommen, Gertjan J. B.
    den Dunnen, Johan T.
    Boer, Judith M.
    de Menezes, Renee X.
    BMC GENOMICS, 2008, 9 (1)
  • [6] Can subtle changes in gene expression be consistently detected with different microarray platforms?
    Paola Pedotti
    Peter AC 't Hoen
    Erno Vreugdenhil
    Geert J Schenk
    Rolf HAM Vossen
    Yavuz Ariyurek
    Mattias de Hollander
    Rowan Kuiper
    Gertjan JB van Ommen
    Johan T den Dunnen
    Judith M Boer
    Renée X de Menezes
    BMC Genomics, 9
  • [7] A comparison of multiple microarray platforms for gene expression
    Nelson, S
    Merriman, B
    AMERICAN JOURNAL OF HUMAN GENETICS, 2003, 73 (05) : 439 - 439
  • [8] Technological platforms for microarray gene expression profiling
    Mandruzzato, Susanna
    MICROARRAY TECHNOLOGY AND CANCER GNE PROFILING, 2007, 593 : 12 - 18
  • [9] Strategies for comparing gene expression profiles from different microarray platforms: Application to a case-control experiment
    Severgnini, Marco
    Bicciato, Silvio
    Mangano, Eleonora
    Scarlatti, Francesca
    Mezzelani, Alessandra
    Mattioli, Michela
    Ghidoni, Riccardo
    Peano, Clelia
    Bonnal, Raoul
    Viti, Federica
    Milanesi, Luciano
    De Bellis, Gianluca
    Battaglia, Cristina
    ANALYTICAL BIOCHEMISTRY, 2006, 353 (01) : 43 - 56
  • [10] Detecting clusters of different geometrical shapes in microarray gene expression data
    Kim, DW
    Lee, KH
    Lee, D
    BIOINFORMATICS, 2005, 21 (09) : 1927 - 1934