Fuzzy c-means clustering methods for symbolic interval data

被引:132
|
作者
de Carvalho, Francisco de A. T. [1 ]
机构
[1] Univ Fed Pernambuco, Ctr Informat, BR-50732970 Recife, PE, Brazil
关键词
symbolic data analysis; fuzzy c-means clustering methods; symbolic interval data; squared euclidean distances; adaptive distances; fuzzy partition interpretation indices; fuzzy cluster interpretation indices;
D O I
10.1016/j.patrec.2006.08.014
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper presents adaptive and non-adaptive fuzzy c-means clustering methods for partitioning symbolic interval data. The proposed methods furnish a fuzzy partition and prototype for each cluster by optimizing an adequacy criterion based on suitable squared Euclidean distances between vectors of intervals. Moreover, various cluster interpretation tools are introduced. Experiments with real and synthetic data sets show the usefulness of these fuzzy c-means clustering methods and the merit of the cluster interpretation tools. (c) 2006 Elsevier B.V. All rights reserved.
引用
收藏
页码:423 / 437
页数:15
相关论文
共 50 条
  • [1] Fuzzy C-Means Clustering Algorithm with Unknown Number of Clusters for Symbolic Interval Data
    Chuang, Chen-Chia
    Jeng, Jin-Tsong
    Li, Chih-Wen
    [J]. 2008 PROCEEDINGS OF SICE ANNUAL CONFERENCE, VOLS 1-7, 2008, : 329 - +
  • [2] A New Fuzzy c-Means Clustering Algorithm for Interval Data
    Jin, Yan
    Ma, Jianghong
    [J]. 2013 INTERNATIONAL CONFERENCE ON COMPUTER SCIENCE AND ARTIFICIAL INTELLIGENCE (ICCSAI 2013), 2013, : 156 - 159
  • [3] Interval kernel Fuzzy C-Means clustering of incomplete data
    Li, Tianhao
    Zhang, Liyong
    Lu, Wei
    Hou, Hui
    Liu, Xiaodong
    Pedrycz, Witold
    Zhong, Chongquan
    [J]. NEUROCOMPUTING, 2017, 237 : 316 - 331
  • [4] New Interval Improved Fuzzy Partitions Fuzzy C-Means Clustering Algorithms under Different Distance Measures for Symbolic Interval Data Analysis
    Chang, Sheng-Chieh
    Chuang, Wei-Ching
    Jeng, Jin-Tsong
    [J]. APPLIED SCIENCES-BASEL, 2023, 13 (22):
  • [5] A fuzzy clustering model of data and fuzzy c-means
    Nascimento, S
    Mirkin, B
    Moura-Pires, F
    [J]. NINTH IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS (FUZZ-IEEE 2000), VOLS 1 AND 2, 2000, : 302 - 307
  • [6] Fuzzy c-means clustering of incomplete data
    Hathaway, RJ
    Bezdek, JC
    [J]. IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART B-CYBERNETICS, 2001, 31 (05): : 735 - 744
  • [7] A weighted fuzzy c-means clustering model for fuzzy data
    D'Urso, P
    Giordani, P
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2006, 50 (06) : 1496 - 1523
  • [8] Interval Fuzzy C-means Approach for Incomplete Data Clustering Based on Neural Networks
    Zhang, Li
    Pan, Hui
    Wang, Beilei
    Zhang, Liyong
    Fu, Zhangjie
    [J]. JOURNAL OF INTERNET TECHNOLOGY, 2018, 19 (04): : 1089 - 1098
  • [9] A fuzzy C-means algorithm for optimizing data clustering
    Hashemi, Seyed Emadedin
    Gholian-Jouybari, Fatemeh
    Hajiaghaei-Keshteli, Mostafa
    [J]. EXPERT SYSTEMS WITH APPLICATIONS, 2023, 227
  • [10] Fuzzy C-means method for clustering microarray data
    Dembélé, D
    Kastner, P
    [J]. BIOINFORMATICS, 2003, 19 (08) : 973 - 980