Fuzzy c-means clustering methods for symbolic interval data

被引:132
|
作者
de Carvalho, Francisco de A. T. [1 ]
机构
[1] Univ Fed Pernambuco, Ctr Informat, BR-50732970 Recife, PE, Brazil
关键词
symbolic data analysis; fuzzy c-means clustering methods; symbolic interval data; squared euclidean distances; adaptive distances; fuzzy partition interpretation indices; fuzzy cluster interpretation indices;
D O I
10.1016/j.patrec.2006.08.014
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper presents adaptive and non-adaptive fuzzy c-means clustering methods for partitioning symbolic interval data. The proposed methods furnish a fuzzy partition and prototype for each cluster by optimizing an adequacy criterion based on suitable squared Euclidean distances between vectors of intervals. Moreover, various cluster interpretation tools are introduced. Experiments with real and synthetic data sets show the usefulness of these fuzzy c-means clustering methods and the merit of the cluster interpretation tools. (c) 2006 Elsevier B.V. All rights reserved.
引用
收藏
页码:423 / 437
页数:15
相关论文
共 50 条
  • [11] Clustering Spatiotemporal Data: An Augmented Fuzzy C-Means
    Izakian, Hesam
    Pedrycz, Witold
    Jamal, Iqbal
    [J]. IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2013, 21 (05) : 855 - 868
  • [12] Median fuzzy c-means for clustering dissimilarity data
    Geweniger, Tina
    Zuelke, Dietlind
    Hammer, Barabara
    Villmann, Thomas
    [J]. NEUROCOMPUTING, 2010, 73 (7-9) : 1109 - 1116
  • [13] Interval-valued possibilistic fuzzy C-means clustering algorithm
    Ji, Zexuan
    Xia, Yong
    Sun, Quansen
    Cao, Guo
    [J]. FUZZY SETS AND SYSTEMS, 2014, 253 : 138 - 156
  • [14] Effective fuzzy c-means clustering algorithms for data clustering problems
    Kannan, S. R.
    Ramathilagam, S.
    Chung, P. C.
    [J]. EXPERT SYSTEMS WITH APPLICATIONS, 2012, 39 (07) : 6292 - 6300
  • [15] Adaptive fuzzy c-means clustering algorithm for interval data type based on interval-dividing technique
    Chaozheng Bao
    Hongming Peng
    Di He
    Junning Wang
    [J]. Pattern Analysis and Applications, 2018, 21 : 803 - 812
  • [16] Adaptive fuzzy c-means clustering algorithm for interval data type based on interval-dividing technique
    Bao, Chaozheng
    Peng, Hongming
    He, Di
    Wang, Junning
    [J]. PATTERN ANALYSIS AND APPLICATIONS, 2018, 21 (03) : 803 - 812
  • [17] Fuzzy c-means for fuzzy hierarchical clustering
    Vicenc, T
    [J]. FUZZ-IEEE 2005: PROCEEDINGS OF THE IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS: BIGGEST LITTLE CONFERENCE IN THE WORLD, 2005, : 646 - 651
  • [18] Uncertain fuzzy clustering:: Interval type-2 fuzzy approach to C-means
    Hwang, Cheul
    Rhee, Frank Chung-Hoon
    [J]. IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2007, 15 (01) : 107 - 120
  • [19] Generalized fuzzy c-means clustering in the presence of outlying data
    Hathaway, RJ
    Overstreet, DD
    Hu, YK
    Davenport, JW
    [J]. APPLICATIONS AND SCIENCE OF COMPUTATIONAL INTELLIGENCE II, 1999, 3722 : 509 - 517
  • [20] Cluster Forests Based Fuzzy C-Means for Data Clustering
    Ben Ayed, Abdelkarim
    Ben Halima, Mohamed
    Alimi, Adel M.
    [J]. INTERNATIONAL JOINT CONFERENCE SOCO'16- CISIS'16-ICEUTE'16, 2017, 527 : 564 - 573