Uncertain fuzzy clustering:: Interval type-2 fuzzy approach to C-means

被引:335
|
作者
Hwang, Cheul [1 ]
Rhee, Frank Chung-Hoon [1 ]
机构
[1] Hanyang Univ, Sch Elect Engn & Comp Sci, Ansan 426791, South Korea
关键词
fuzzy C-means (FCM); fuzzy clustering; interval type-2 fuzzy sets; type-2 fuzzy sets;
D O I
10.1109/TFUZZ.2006.889763
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In many pattern recognition applications, it may be impossible in most cases to obtain perfect knowledge or information for a given pattern set. Uncertain information can create imperfect expressions for pattern sets in various pattern recognition algorithms. Therefore, various types of uncertainty may be taken into account when performing several pattern recognition methods. When one performs clustering with fuzzy sets, fuzzy membership values express assignment availability of patterns for clusters. However, when one assigns fuzzy memberships to a pattern set, imperfect information for a pattern set involves uncertainty which exist in the various parameters that are used in fuzzy membership assignment. When one encounters fuzzy clustering, fuzzy membership design includes various uncertainties (e.g., distance measure, fuzzifier, prototypes, etc.). In this paper, we focus on the uncertainty associated with the fuzzifer parameter m that controls the amount of fuzziness of the final C-partition in the fuzzy C-means (FCM) algorithm. To design and manage uncertainty for fuzzifier m, we extend a pattern set to interval type-2 fuzzy sets using two fuzzifiers m(1) and m(2) which creates a footprint of uncertainty (FOU) for the fuzzifier m. Then, we incorporate this interval type-2 fuzzy set into FCM to observe the effect of managing uncertainty from the two fuzzifiers. We also provide some solutions to type-reduction and defuzzification (i.e., cluster center updating and hard-partitioning) in FCM. Several experimental results are given to show the validity of our method.
引用
收藏
页码:107 / 120
页数:14
相关论文
共 50 条
  • [1] Interval Type-2 Fuzzy C-Means Approach to Collaborative Clustering
    Trong Hop Dang
    Long Thanh Ngo
    Pedrycz, Witold
    [J]. 2015 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS (FUZZ-IEEE 2015), 2015,
  • [2] General Type-2 Fuzzy C-Means Algorithm for Uncertain Fuzzy Clustering
    Linda, Ondrej
    Manic, Milos
    [J]. IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2012, 20 (05) : 883 - 897
  • [3] Interval Type-2 Fuzzy C-means Clustering using Intuitionistic Fuzzy Sets
    Dzung Dinh Nguyen
    Long Thanh Ngo
    Long The Pham
    [J]. 2013 THIRD WORLD CONGRESS ON INFORMATION AND COMMUNICATION TECHNOLOGIES (WICT), 2013, : 299 - 304
  • [4] Interval Type-2 Relative Entropy Fuzzy C-Means clustering
    Zarinbal, M.
    Zarandi, M. H. Fazel
    Turksen, I. B.
    [J]. INFORMATION SCIENCES, 2014, 272 : 49 - 72
  • [5] Interval Type-2 Fuzzy Possibilistic C-Means Clustering Algorithm
    Rubio, E.
    Castillo, Oscar
    Melin, Patricia
    [J]. RECENT DEVELOPMENTS AND NEW DIRECTION IN SOFT-COMPUTING FOUNDATIONS AND APPLICATIONS, 2016, 342 : 185 - 194
  • [6] Genetic Based Interval Type-2 Fuzzy C-Means Clustering
    Dzung Dinh Nguyen
    Long Thanh Ngo
    Long The Pham
    [J]. CONTEXT-AWARE SYSTEMS AND APPLICATIONS, (ICCASA 2012), 2013, 109 : 239 - 248
  • [7] Multiple Kernel Interval Type-2 Fuzzy C-Means Clustering
    Dzung Dinh Nguyen
    Long Thanh Ngo
    [J]. 2013 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS (FUZZ - IEEE 2013), 2013,
  • [8] A new Interval Type-2 Fuzzy Possibilistic C-Means Clustering Algorithm
    Rubio, E.
    Castillo, O.
    Melin, P.
    [J]. 2015 ANNUAL MEETING OF THE NORTH AMERICAN FUZZY INFORMATION PROCESSING SOCIETY DIGIPEN NAFIPS 2015, 2015,
  • [9] A type-2 fuzzy C-means clustering algorithm
    Rhee, FCH
    Hwang, C
    [J]. JOINT 9TH IFSA WORLD CONGRESS AND 20TH NAFIPS INTERNATIONAL CONFERENCE, PROCEEDINGS, VOLS. 1-5, 2001, : 1926 - 1929
  • [10] Interval Type-2 Recursive Fuzzy C-Means Clustering Algorithm in the TS Fuzzy Model Identification
    Dam, Tanmoy
    Deb, Alok Kanti
    [J]. 2015 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (IEEE SSCI), 2015, : 22 - 29