Uncertain fuzzy clustering:: Interval type-2 fuzzy approach to C-means

被引:335
|
作者
Hwang, Cheul [1 ]
Rhee, Frank Chung-Hoon [1 ]
机构
[1] Hanyang Univ, Sch Elect Engn & Comp Sci, Ansan 426791, South Korea
关键词
fuzzy C-means (FCM); fuzzy clustering; interval type-2 fuzzy sets; type-2 fuzzy sets;
D O I
10.1109/TFUZZ.2006.889763
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In many pattern recognition applications, it may be impossible in most cases to obtain perfect knowledge or information for a given pattern set. Uncertain information can create imperfect expressions for pattern sets in various pattern recognition algorithms. Therefore, various types of uncertainty may be taken into account when performing several pattern recognition methods. When one performs clustering with fuzzy sets, fuzzy membership values express assignment availability of patterns for clusters. However, when one assigns fuzzy memberships to a pattern set, imperfect information for a pattern set involves uncertainty which exist in the various parameters that are used in fuzzy membership assignment. When one encounters fuzzy clustering, fuzzy membership design includes various uncertainties (e.g., distance measure, fuzzifier, prototypes, etc.). In this paper, we focus on the uncertainty associated with the fuzzifer parameter m that controls the amount of fuzziness of the final C-partition in the fuzzy C-means (FCM) algorithm. To design and manage uncertainty for fuzzifier m, we extend a pattern set to interval type-2 fuzzy sets using two fuzzifiers m(1) and m(2) which creates a footprint of uncertainty (FOU) for the fuzzifier m. Then, we incorporate this interval type-2 fuzzy set into FCM to observe the effect of managing uncertainty from the two fuzzifiers. We also provide some solutions to type-reduction and defuzzification (i.e., cluster center updating and hard-partitioning) in FCM. Several experimental results are given to show the validity of our method.
引用
下载
收藏
页码:107 / 120
页数:14
相关论文
共 50 条
  • [21] A genetic type-2 fuzzy C-means clustering approach to M-FISH segmentation
    Dzung Dinh Nguyen
    Long Thanh Ngo
    Watada, Junzo
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2014, 27 (06) : 3111 - 3122
  • [22] Online System Identification for Nonlinear Uncertain Dynamical Systems Using Recursive Interval Type-2 TS Fuzzy C-means Clustering
    Al-Mahturi, Ayad
    Santoso, Fendy
    Garratt, Matthew A.
    Anavatti, Sreenatha G.
    2020 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (SSCI), 2020, : 1695 - 1701
  • [23] P-IT2IFCM: Probabilistic Interval Type-2 Intuitionistic Fuzzy c-Means Clustering Algorithm
    Chakraborty, Debanjan
    Varshney, Ayush K.
    Muhuri, Pranab K.
    Lohani, Q. M. Danish
    2022 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS (FUZZ-IEEE), 2022,
  • [24] Interval type fuzzifier parameter model in fuzzy C-means clustering
    Xiao, Man-Sheng
    Xiao, Zhe
    Wen, Zhi-Qiang
    Yu, Hui-Jun
    Xi Tong Gong Cheng Yu Dian Zi Ji Shu/Systems Engineering and Electronics, 2015, 37 (04): : 868 - 873
  • [25] An improved site characterization method based on interval type-2 fuzzy C-means clustering of CPTu data
    Yin J.
    Opoku L.
    Miao Y.-H.
    Zuo P.-P.
    Yang Y.
    Lu J.-F.
    Arabian Journal of Geosciences, 2021, 14 (14)
  • [26] An interval type 2 hesitant fuzzy MCDM approach and a fuzzy c means clustering for retailer clustering
    Oner, Sultan Ceren
    Oztaysi, Basar
    SOFT COMPUTING, 2018, 22 (15) : 4971 - 4987
  • [27] An interval type 2 hesitant fuzzy MCDM approach and a fuzzy c means clustering for retailer clustering
    Sultan Ceren Oner
    Başar Oztaysi
    Soft Computing, 2018, 22 : 4971 - 4987
  • [28] Robust interval type-2 possibilistic C-means clustering
    Yu, Long
    Xiao, Jian
    Zhou, Cong
    Kongzhi yu Juece/Control and Decision, 2009, 24 (04): : 503 - 507
  • [29] Optimization of the Interval Type-2 Fuzzy C-Means using Particle Swarm Optimization
    Rubio, E.
    Castillo, O.
    2013 WORLD CONGRESS ON NATURE AND BIOLOGICALLY INSPIRED COMPUTING (NABIC), 2013, : 10 - 15
  • [30] Enhanced interval type-2 fuzzy c-means algorithm with improved initial center
    Qiu, Cunyong
    Xiao, Jian
    Han, Lu
    Iqbal, Muhammad Naveed
    PATTERN RECOGNITION LETTERS, 2014, 38 : 86 - 92