Fuzzy c-means clustering methods for symbolic interval data

被引:132
|
作者
de Carvalho, Francisco de A. T. [1 ]
机构
[1] Univ Fed Pernambuco, Ctr Informat, BR-50732970 Recife, PE, Brazil
关键词
symbolic data analysis; fuzzy c-means clustering methods; symbolic interval data; squared euclidean distances; adaptive distances; fuzzy partition interpretation indices; fuzzy cluster interpretation indices;
D O I
10.1016/j.patrec.2006.08.014
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper presents adaptive and non-adaptive fuzzy c-means clustering methods for partitioning symbolic interval data. The proposed methods furnish a fuzzy partition and prototype for each cluster by optimizing an adequacy criterion based on suitable squared Euclidean distances between vectors of intervals. Moreover, various cluster interpretation tools are introduced. Experiments with real and synthetic data sets show the usefulness of these fuzzy c-means clustering methods and the merit of the cluster interpretation tools. (c) 2006 Elsevier B.V. All rights reserved.
引用
收藏
页码:423 / 437
页数:15
相关论文
共 50 条
  • [31] Regularized fuzzy c-means clustering of high dimensional data
    Uno, Kohei
    [J]. INTERNATIONAL JOURNAL OF PSYCHOLOGY, 2016, 51 : 984 - 984
  • [32] Analysis of spectroscopic imaging data by fuzzy C-means clustering
    Mansfield, JR
    Sowa, MG
    Scarth, GB
    Somorjai, RL
    Mantsch, HH
    [J]. ANALYTICAL CHEMISTRY, 1997, 69 (16) : 3370 - 3374
  • [33] Fuzzy C-Means and Fuzzy TLBO for Fuzzy Clustering
    Krishna, P. Gopala
    Bhaskari, D. Lalitha
    [J]. PROCEEDINGS OF THE SECOND INTERNATIONAL CONFERENCE ON COMPUTER AND COMMUNICATION TECHNOLOGIES, IC3T 2015, VOL 1, 2016, 379 : 479 - 486
  • [34] Clustering of COVID-19 data for knowledge discovery using c-means and fuzzy c-means
    Afzal, Asif
    Ansari, Zahid
    Alshahrani, Saad
    Raj, Arun K.
    Kuruniyan, Mohamed Saheer
    Saleel, C. Ahamed
    Nisar, Kottakkaran Sooppy
    [J]. RESULTS IN PHYSICS, 2021, 29
  • [35] Interval Type-2 Fuzzy C-Means Approach to Collaborative Clustering
    Trong Hop Dang
    Long Thanh Ngo
    Pedrycz, Witold
    [J]. 2015 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS (FUZZ-IEEE 2015), 2015,
  • [36] An interval weighed fuzzy c-means clustering by genetically guided alternating optimization
    Zhang, Liyong
    Pedrycz, Witold
    Lu, Wei
    Liu, Xiaodong
    Zhang, Li
    [J]. EXPERT SYSTEMS WITH APPLICATIONS, 2014, 41 (13) : 5960 - 5971
  • [37] Interval Type-2 Relative Entropy Fuzzy C-Means clustering
    Zarinbal, M.
    Zarandi, M. H. Fazel
    Turksen, I. B.
    [J]. INFORMATION SCIENCES, 2014, 272 : 49 - 72
  • [38] Interval Fuzzy Possibilistic C-Means Clustering Algorithm on Smart Phone Implement
    Jeng, Jin-Tsong
    Chuang, Chen-Chia
    Chang, Sheng-Chieh
    [J]. 2014 PROCEEDINGS OF THE SICE ANNUAL CONFERENCE (SICE), 2014, : 78 - +
  • [39] Multiple Kernel Interval Type-2 Fuzzy C-Means Clustering
    Dzung Dinh Nguyen
    Long Thanh Ngo
    [J]. 2013 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS (FUZZ - IEEE 2013), 2013,
  • [40] Genetic Based Interval Type-2 Fuzzy C-Means Clustering
    Dzung Dinh Nguyen
    Long Thanh Ngo
    Long The Pham
    [J]. CONTEXT-AWARE SYSTEMS AND APPLICATIONS, (ICCASA 2012), 2013, 109 : 239 - 248