Interval Fuzzy C-means Approach for Incomplete Data Clustering Based on Neural Networks

被引:3
|
作者
Zhang, Li [1 ]
Pan, Hui [1 ]
Wang, Beilei [1 ]
Zhang, Liyong [2 ]
Fu, Zhangjie [3 ]
机构
[1] Liaoning Univ, Sch Informat, Shenyang, Liaoning, Peoples R China
[2] Dalian Univ Technol, Sch Control Sci & Engn, Dalian, Peoples R China
[3] Nanjing Univ Informat Sci & Technol, Sch Comp & Software, Nanjing, Jiangsu, Peoples R China
来源
JOURNAL OF INTERNET TECHNOLOGY | 2018年 / 19卷 / 04期
关键词
Incomplete data; Interval valued estimation; Fuzzy C-means clustering; PATTERN-RECOGNITION; ALGORITHM; RULES;
D O I
10.3966/160792642018081904012
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In the field of data mining and machine learning, the problem of recovering missing values from a dataset has become an important research issue. Recently, the numerical values may not be suitable for describing the uncertainty of missing attributes, and there is a certain degree of error. Hence, we propose an efficient interval approach which utilizes a missing-data back propagation to estimate the error value of the complete property of the missing samples and convert the value of the missing attribute to the form of an interval. Furthermore, fuzzy C-means performs clustering analysis on the recovered data set. Therefore, the numerical data set is converted into an interval valued fuzzy C means clustering analysis, and the final clustering results are obtained. The experimental results demonstrate that our algorithm has good accuracy in data clustering performance.
引用
收藏
页码:1089 / 1098
页数:10
相关论文
共 50 条
  • [1] Interval kernel Fuzzy C-Means clustering of incomplete data
    Li, Tianhao
    Zhang, Liyong
    Lu, Wei
    Hou, Hui
    Liu, Xiaodong
    Pedrycz, Witold
    Zhong, Chongquan
    [J]. NEUROCOMPUTING, 2017, 237 : 316 - 331
  • [2] Fuzzy c-means clustering of incomplete data
    Hathaway, RJ
    Bezdek, JC
    [J]. IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART B-CYBERNETICS, 2001, 31 (05): : 735 - 744
  • [3] Fuzzy C-means clustering algorithm based on incomplete data
    Jia, Zhiping
    Yu, Zhiqiang
    Zhang, Chenghui
    [J]. 2006 IEEE INTERNATIONAL CONFERENCE ON INFORMATION ACQUISITION, VOLS 1 AND 2, CONFERENCE PROCEEDINGS, 2006, : 600 - 604
  • [4] A Robust Fuzzy c-Means Clustering Algorithm for Incomplete Data
    Li, Jinhua
    Song, Shiji
    Zhang, Yuli
    Li, Kang
    [J]. INTELLIGENT COMPUTING, NETWORKED CONTROL, AND THEIR ENGINEERING APPLICATIONS, PT II, 2017, 762 : 3 - 12
  • [5] Fuzzy c-means clustering methods for symbolic interval data
    de Carvalho, Francisco de A. T.
    [J]. PATTERN RECOGNITION LETTERS, 2007, 28 (04) : 423 - 437
  • [6] A New Fuzzy c-Means Clustering Algorithm for Interval Data
    Jin, Yan
    Ma, Jianghong
    [J]. 2013 INTERNATIONAL CONFERENCE ON COMPUTER SCIENCE AND ARTIFICIAL INTELLIGENCE (ICCSAI 2013), 2013, : 156 - 159
  • [7] Clustering Incomplete Data Using Kernel-Based Fuzzy C-means Algorithm
    Dao-Qiang Zhang
    Song-Can Chen
    [J]. Neural Processing Letters, 2003, 18 : 155 - 162
  • [8] The Design of Fuzzy C-Means Clustering based Neural Networks for Emotion Classification
    Park, B. -J.
    Jang, E. -H.
    Kim, S. -H.
    Huh, C.
    Chung, M. -A.
    [J]. PROCEEDINGS OF THE 2013 JOINT IFSA WORLD CONGRESS AND NAFIPS ANNUAL MEETING (IFSA/NAFIPS), 2013, : 413 - 417
  • [9] Clustering incomplete data using kernel-based fuzzy C-means algorithm
    Zhang, DQ
    Chen, SC
    [J]. NEURAL PROCESSING LETTERS, 2003, 18 (03) : 155 - 162
  • [10] Application of fuzzy ARTMAP and fuzzy c-means clustering to pattern classification with incomplete data
    Chee Peng Lim
    Mei Ming Kuan
    Robert F. Harrison
    [J]. Neural Computing & Applications, 2005, 14 : 104 - 113