Fuzzy C-means method for clustering microarray data

被引:340
|
作者
Dembélé, D [1 ]
Kastner, P [1 ]
机构
[1] ULP, CNRS, IMSERM, Inst Genet & Biol Mol & Cellulaire, F-67404 Illkirch Graffenstaden, France
关键词
D O I
10.1093/bioinformatics/btg119
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Motivation: Clustering analysis of data from DNA microarray hybridization studies is essential for identifying biologically relevant groups of genes. Partitional clustering methods such as K-means or self-organizing maps assign each gene to a single cluster. However, these methods do not provide information about the influence of a given gene for the overall shape of clusters. Here we apply a fuzzy partitioning method, Fuzzy C-means (FCM), to attribute cluster membership values to genes. Results: A major problem in applying the FCM method for clustering microarray data is the choice of the fuzziness parameter m. We show that the commonly used value m = 2 is not appropriate for some data sets, and that optimal values for m vary widely from one data set to another. We propose an empirical method, based on the distribution of distances between genes in a given data set, to determine an adequate value for m. By setting threshold levels for the membership values, genes which are tigthly associated to a given cluster can be selected. Using a yeast cell cycle data set as an example, we show that this selection increases the overall biological significance of the genes within the cluster.
引用
收藏
页码:973 / 980
页数:8
相关论文
共 50 条
  • [1] The modified fuzzy c-means method for clustering of microarray data
    Taraskina, A. S.
    Cheremushkin, E. S.
    [J]. PROCEEDINGS OF THE FIFTH INTERNATIONAL CONFERENCE ON BIOINFORMATICS OF GENOME REGULATION AND STRUCTURE, VOL 1, 2006, : 180 - +
  • [2] Fuzzy C-means method with empirical mode decomposition for clustering microarray data
    Wang, Yan-Fei
    Yu, Zu-Guo
    Anh, Vo
    [J]. INTERNATIONAL JOURNAL OF DATA MINING AND BIOINFORMATICS, 2013, 7 (02) : 103 - 117
  • [3] Fuzzy C-means method with empirical mode decomposition for clustering microarray data
    Wang, Yan-Fei
    Yu, Zu-Guo
    Anh, Vo
    [J]. 2010 IEEE INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICINE, 2010, : 192 - 197
  • [4] Missing value estimation for microarray data based on fuzzy C-means clustering
    Luo, JiaWei
    Yang, Tao
    Wang, Yan
    [J]. Eighth International Conference on High-Performance Computing in Asia-Pacific Region, Proceedings, 2005, : 611 - 616
  • [5] A fuzzy clustering model of data and fuzzy c-means
    Nascimento, S
    Mirkin, B
    Moura-Pires, F
    [J]. NINTH IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS (FUZZ-IEEE 2000), VOLS 1 AND 2, 2000, : 302 - 307
  • [6] Fuzzy c-means clustering of incomplete data
    Hathaway, RJ
    Bezdek, JC
    [J]. IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART B-CYBERNETICS, 2001, 31 (05): : 735 - 744
  • [7] Fuzzy Clustering Using C-Means Method
    Krastev, Georgi
    Georgiev, Tsvetozar
    [J]. TEM JOURNAL-TECHNOLOGY EDUCATION MANAGEMENT INFORMATICS, 2015, 4 (02): : 144 - 148
  • [8] CLUSTERING MICROARRAY GENE EXPRESSION DATA USING FUZZY C-MEANS AND DTW DISTANCE
    Taghizad, H.
    Mehridehnavi, A.
    [J]. 2011 3RD INTERNATIONAL CONFERENCE ON COMPUTER TECHNOLOGY AND DEVELOPMENT (ICCTD 2011), VOL 1, 2012, : 395 - 399
  • [9] A weighted fuzzy c-means clustering model for fuzzy data
    D'Urso, P
    Giordani, P
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2006, 50 (06) : 1496 - 1523
  • [10] Median fuzzy c-means for clustering dissimilarity data
    Geweniger, Tina
    Zuelke, Dietlind
    Hammer, Barabara
    Villmann, Thomas
    [J]. NEUROCOMPUTING, 2010, 73 (7-9) : 1109 - 1116