Missing value estimation for microarray data based on fuzzy C-means clustering

被引:0
|
作者
Luo, JiaWei [1 ]
Yang, Tao [1 ]
Wang, Yan [1 ]
机构
[1] Hunan Univ, Sch Comp & Commun, Changsha 410082, Peoples R China
关键词
microarray data; missing value estimation; fuzzy C-means; validity function;
D O I
暂无
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Microarray experiments can generate data sets with multiple missing expression values, normally due to various experimental problems. Unfortunately, many algorithms for gene expression analysis require a complete matrix of gene array values as input. Effective missing value estimation methods are needed, therefore, to minimize the effect of incomplete data sets on analysis, and to increase the range of data sets to which these algorithms can be applied In this paper, a new imputation method (FCMimpute) based on the fuzzy C-means clustering algorithm is proposed to estimate missing values in microarray data, which utilizes information in the cluster structures. This imputes the missing value by the attribute over all cluster centers obtained through fuzzy C-means clustering algorithm applicable to incomplete data. We compare the estimation accuracy of our method with the widely used KNNimpute and another SKNNimpute method on various microarray data sets with different percentage of missing entries. In our experiments, the proposed FCMimpute method shows better performance than other methods in terms of Root Means Square error.
引用
收藏
页码:611 / 616
页数:6
相关论文
共 50 条
  • [1] Fuzzy C-means method for clustering microarray data
    Dembélé, D
    Kastner, P
    BIOINFORMATICS, 2003, 19 (08) : 973 - 980
  • [2] The modified fuzzy c-means method for clustering of microarray data
    Taraskina, A. S.
    Cheremushkin, E. S.
    PROCEEDINGS OF THE FIFTH INTERNATIONAL CONFERENCE ON BIOINFORMATICS OF GENOME REGULATION AND STRUCTURE, VOL 1, 2006, : 180 - +
  • [3] Fuzzy c-means clustering of partially missing data sets
    Hathaway, RJ
    Overstreet, DD
    Bezdek, JC
    APPLICATIONS AND SCIENCE OF COMPUTATIONAL INTELLIGENCE III, 2000, 4055 : 159 - 165
  • [4] ESTIMATION OF MISSING VALUES USING OPTIMISED HYBRID FUZZY C-MEANS AND MAJORITY VOTE FOR MICROARRAY DATA
    Kumaran, Shamini Raja
    Othman, Mohd Shahizan
    Yusuf, Lizawati Mi
    JOURNAL OF INFORMATION AND COMMUNICATION TECHNOLOGY-MALAYSIA, 2020, 19 (04): : 459 - 482
  • [5] Fuzzy C-means method with empirical mode decomposition for clustering microarray data
    Wang, Yan-Fei
    Yu, Zu-Guo
    Anh, Vo
    INTERNATIONAL JOURNAL OF DATA MINING AND BIOINFORMATICS, 2013, 7 (02) : 103 - 117
  • [6] Fuzzy C-means method with empirical mode decomposition for clustering microarray data
    Wang, Yan-Fei
    Yu, Zu-Guo
    Anh, Vo
    2010 IEEE INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICINE, 2010, : 192 - 197
  • [7] Fuzzy C-Means clustering of incomplete data based on probabilistic information granules of missing values
    Zhang, Liyong
    Lu, Wei
    Liu, Xiaodong
    Pedrycz, Witold
    Zhong, Chongquan
    KNOWLEDGE-BASED SYSTEMS, 2016, 99 : 51 - 70
  • [8] A fuzzy clustering model of data and fuzzy c-means
    Nascimento, S
    Mirkin, B
    Moura-Pires, F
    NINTH IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS (FUZZ-IEEE 2000), VOLS 1 AND 2, 2000, : 302 - 307
  • [9] Fuzzy C-means clustering algorithm based on incomplete data
    Jia, Zhiping
    Yu, Zhiqiang
    Zhang, Chenghui
    2006 IEEE INTERNATIONAL CONFERENCE ON INFORMATION ACQUISITION, VOLS 1 AND 2, CONFERENCE PROCEEDINGS, 2006, : 600 - 604
  • [10] Cluster Forests Based Fuzzy C-Means for Data Clustering
    Ben Ayed, Abdelkarim
    Ben Halima, Mohamed
    Alimi, Adel M.
    INTERNATIONAL JOINT CONFERENCE SOCO'16- CISIS'16-ICEUTE'16, 2017, 527 : 564 - 573