Missing value estimation for microarray data based on fuzzy C-means clustering

被引:0
|
作者
Luo, JiaWei [1 ]
Yang, Tao [1 ]
Wang, Yan [1 ]
机构
[1] Hunan Univ, Sch Comp & Commun, Changsha 410082, Peoples R China
来源
Eighth International Conference on High-Performance Computing in Asia-Pacific Region, Proceedings | 2005年
关键词
microarray data; missing value estimation; fuzzy C-means; validity function;
D O I
暂无
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Microarray experiments can generate data sets with multiple missing expression values, normally due to various experimental problems. Unfortunately, many algorithms for gene expression analysis require a complete matrix of gene array values as input. Effective missing value estimation methods are needed, therefore, to minimize the effect of incomplete data sets on analysis, and to increase the range of data sets to which these algorithms can be applied In this paper, a new imputation method (FCMimpute) based on the fuzzy C-means clustering algorithm is proposed to estimate missing values in microarray data, which utilizes information in the cluster structures. This imputes the missing value by the attribute over all cluster centers obtained through fuzzy C-means clustering algorithm applicable to incomplete data. We compare the estimation accuracy of our method with the widely used KNNimpute and another SKNNimpute method on various microarray data sets with different percentage of missing entries. In our experiments, the proposed FCMimpute method shows better performance than other methods in terms of Root Means Square error.
引用
收藏
页码:611 / 616
页数:6
相关论文
共 50 条
  • [21] Clustering Spatiotemporal Data: An Augmented Fuzzy C-Means
    Izakian, Hesam
    Pedrycz, Witold
    Jamal, Iqbal
    IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2013, 21 (05) : 855 - 868
  • [22] Median fuzzy c-means for clustering dissimilarity data
    Geweniger, Tina
    Zuelke, Dietlind
    Hammer, Barabara
    Villmann, Thomas
    NEUROCOMPUTING, 2010, 73 (7-9) : 1109 - 1116
  • [23] Effective fuzzy c-means clustering algorithms for data clustering problems
    Kannan, S. R.
    Ramathilagam, S.
    Chung, P. C.
    EXPERT SYSTEMS WITH APPLICATIONS, 2012, 39 (07) : 6292 - 6300
  • [24] Microarray Filtering-Based Fuzzy C-Means Clustering and Classification in Genomic Signal Processing
    Purnendu Mishra
    Nilamani Bhoi
    Arabian Journal for Science and Engineering, 2019, 44 : 9381 - 9395
  • [25] Microarray Filtering-Based Fuzzy C-Means Clustering and Classification in Genomic Signal Processing
    Mishra, Purnendu
    Bhoi, Nilamani
    ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING, 2019, 44 (11) : 9381 - 9395
  • [26] Sparse learning based fuzzy c-means clustering
    Gu, Jing
    Jiao, Licheng
    Yang, Shuyuan
    Zhao, Jiaqi
    KNOWLEDGE-BASED SYSTEMS, 2017, 119 : 113 - 125
  • [27] Fuzzy c-means for fuzzy hierarchical clustering
    Vicenc, T
    FUZZ-IEEE 2005: PROCEEDINGS OF THE IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS: BIGGEST LITTLE CONFERENCE IN THE WORLD, 2005, : 646 - 651
  • [28] Fuzzy c-means classifier with deterministic initialization and missing value imputation
    Ichihashi, Hidetomo
    Honda, Katsuhiro
    Notsu, Akira
    Yagi, Takafumi
    2007 IEEE SYMPOSIUM ON FOUNDATIONS OF COMPUTATIONAL INTELLIGENCE, VOLS 1 AND 2, 2007, : 214 - +
  • [29] A C-means clustering based fuzzy modeling method
    Chang, XG
    Li, W
    Farrell, J
    NINTH IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS (FUZZ-IEEE 2000), VOLS 1 AND 2, 2000, : 937 - 940
  • [30] New fuzzy c-means clustering model based on the data weighted approach
    Tang, Chenglong
    Wang, Shigang
    Xu, Wei
    DATA & KNOWLEDGE ENGINEERING, 2010, 69 (09) : 881 - 900