Fuzzy C-Means Clustering Algorithm with Unknown Number of Clusters for Symbolic Interval Data

被引:0
|
作者
Chuang, Chen-Chia [1 ]
Jeng, Jin-Tsong [2 ]
Li, Chih-Wen [1 ]
机构
[1] Natl Ilan Univ, Dept Elect Engn, Ilan, Taiwan
[2] Natl Farmosa Univ, Dept Comp Sci & Informat Engn, Taipei, Taiwan
关键词
Symbolic interval-values data; Competitive agglomeration clustering algorithm; Fuzzy c-means clustering algorithm;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this study, the concepts of competitive agglomeration clustering algorithm is incorporated into fuzzy c-means (FCM) clustering algorithm for symbolic interval-values data. In the proposed approach, called as IFCMwUNC clustering algorithm, the problems of the unknown clusters number and the initialization of prototypes in the FCM clustering algorithm for symbolic interval-values data are overcome and discussed. Due to the competitive agglomeration clustering algorithm possess the advantages of the hierarchical clustering algorithm and the partitional clustering algorithm, IFCMwUNC clustering algorithm can be fast converges in a few iterations regardless of the initial number of clusters. Moreover, it is also converges to the same optimal partition regardless of its initialization. Experiments results show the merits and usefulness of IFCMwUNC clustering algorithm for the symbolic interval-values data.
引用
收藏
页码:329 / +
页数:3
相关论文
共 50 条
  • [1] Fuzzy c-means clustering methods for symbolic interval data
    de Carvalho, Francisco de A. T.
    [J]. PATTERN RECOGNITION LETTERS, 2007, 28 (04) : 423 - 437
  • [2] Robust-learning fuzzy c-means clustering algorithm with unknown number of clusters
    Yang, Miin-Shen
    Nataliani, Yessica
    [J]. PATTERN RECOGNITION, 2017, 71 : 45 - 59
  • [3] A New Fuzzy c-Means Clustering Algorithm for Interval Data
    Jin, Yan
    Ma, Jianghong
    [J]. 2013 INTERNATIONAL CONFERENCE ON COMPUTER SCIENCE AND ARTIFICIAL INTELLIGENCE (ICCSAI 2013), 2013, : 156 - 159
  • [4] Fuzzy C-means clustering algorithm for automatically determining the number of clusters
    Wang, Zhihe
    Wang, Shuyan
    Du, Hui
    Guo, Hao
    [J]. 2020 16TH INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE AND SECURITY (CIS 2020), 2020, : 223 - 227
  • [5] Optimization of the clusters number of An improved fuzzy C-means clustering algorithm
    Xu Yejun
    [J]. 10TH INTERNATIONAL CONFERENCE ON COMPUTER SCIENCE & EDUCATION (ICCSE 2015), 2015, : 931 - 935
  • [6] Locating clusters in noisy data: A genetic fuzzy c-means clustering algorithm
    Egan, MA
    [J]. 1998 CONFERENCE OF THE NORTH AMERICAN FUZZY INFORMATION PROCESSING SOCIETY - NAFIPS, 1998, : 178 - 182
  • [7] A fuzzy C-means algorithm for optimizing data clustering
    Hashemi, Seyed Emadedin
    Gholian-Jouybari, Fatemeh
    Hajiaghaei-Keshteli, Mostafa
    [J]. EXPERT SYSTEMS WITH APPLICATIONS, 2023, 227
  • [8] Interval kernel Fuzzy C-Means clustering of incomplete data
    Li, Tianhao
    Zhang, Liyong
    Lu, Wei
    Hou, Hui
    Liu, Xiaodong
    Pedrycz, Witold
    Zhong, Chongquan
    [J]. NEUROCOMPUTING, 2017, 237 : 316 - 331
  • [9] Optimum harmonic number of clusters and best clustering in fuzzy C-means
    Zhu Ke-jun
    Guo Hai-xiang
    Yu Jin
    Liu Ting
    [J]. PROCEEDINGS OF THE 2006 INTERNATIONAL CONFERENCE ON MANAGEMENT SCIENCE & ENGINEERING (13TH), VOLS 1-3, 2006, : 369 - 374
  • [10] Optimum Coordinate Number of Clusters and Best Clustering in Fuzzy C-means
    Yu, Shiwei
    Zhu, Kejun
    [J]. 2008 7TH WORLD CONGRESS ON INTELLIGENT CONTROL AND AUTOMATION, VOLS 1-23, 2008, : 5776 - 5781