Fuzzy C-Means Clustering Algorithm with Unknown Number of Clusters for Symbolic Interval Data

被引:0
|
作者
Chuang, Chen-Chia [1 ]
Jeng, Jin-Tsong [2 ]
Li, Chih-Wen [1 ]
机构
[1] Natl Ilan Univ, Dept Elect Engn, Ilan, Taiwan
[2] Natl Farmosa Univ, Dept Comp Sci & Informat Engn, Taipei, Taiwan
关键词
Symbolic interval-values data; Competitive agglomeration clustering algorithm; Fuzzy c-means clustering algorithm;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this study, the concepts of competitive agglomeration clustering algorithm is incorporated into fuzzy c-means (FCM) clustering algorithm for symbolic interval-values data. In the proposed approach, called as IFCMwUNC clustering algorithm, the problems of the unknown clusters number and the initialization of prototypes in the FCM clustering algorithm for symbolic interval-values data are overcome and discussed. Due to the competitive agglomeration clustering algorithm possess the advantages of the hierarchical clustering algorithm and the partitional clustering algorithm, IFCMwUNC clustering algorithm can be fast converges in a few iterations regardless of the initial number of clusters. Moreover, it is also converges to the same optimal partition regardless of its initialization. Experiments results show the merits and usefulness of IFCMwUNC clustering algorithm for the symbolic interval-values data.
引用
收藏
页码:329 / +
页数:3
相关论文
共 50 条
  • [41] A Fuzzy Logic C-Means Clustering Algorithm to Enhance Microcalcifications Clusters in Digital Mammograms
    Vivona, L.
    Cascio, D.
    Magro, R.
    Fauci, F.
    Raso, G.
    [J]. 2011 IEEE NUCLEAR SCIENCE SYMPOSIUM AND MEDICAL IMAGING CONFERENCE (NSS/MIC), 2011, : 3048 - 3050
  • [42] Distributed C-Means Data Clustering Algorithm
    Oliva, Gabriele
    Setola, Roberto
    Hadjicostis, Christoforos N.
    [J]. 2016 IEEE 55TH CONFERENCE ON DECISION AND CONTROL (CDC), 2016, : 4396 - 4401
  • [43] Unsupervised Multiview Fuzzy C-Means Clustering Algorithm
    Hussain, Ishtiaq
    Sinaga, Kristina P.
    Yang, Miin-Shen
    [J]. ELECTRONICS, 2023, 12 (21)
  • [44] General equalization fuzzy C-means clustering algorithm
    Wen, Chuan-Jun
    Zhan, Yong-Zhao
    Ke, Jia
    [J]. Xitong Gongcheng Lilun yu Shijian/System Engineering Theory and Practice, 2012, 32 (12): : 2751 - 2755
  • [45] Kernelized fuzzy attribute C-means clustering algorithm
    Liu, Jingwei
    Xu, Meizhi
    [J]. FUZZY SETS AND SYSTEMS, 2008, 159 (18) : 2428 - 2445
  • [46] Optimizing parameters of fuzzy c-means clustering algorithm
    Liu, Yongchao
    Zhang, Yunjie
    [J]. FOURTH INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS AND KNOWLEDGE DISCOVERY, VOL 1, PROCEEDINGS, 2007, : 633 - 638
  • [47] A Modified Possibilistic Fuzzy c-Means Clustering Algorithm
    Qu, Fuheng
    Hu, Yating
    Xue, Yaohong
    Yang, Yong
    [J]. 2013 NINTH INTERNATIONAL CONFERENCE ON NATURAL COMPUTATION (ICNC), 2013, : 858 - 862
  • [48] New Modification of Fuzzy c-Means Clustering Algorithm
    Zhang, Kong-sheng
    Li, Bai-nian
    Xu, Jian
    Wu, Li-bin
    [J]. FUZZY INFORMATION AND ENGINEERING, VOL 1, 2009, 54 : 448 - 455
  • [49] A Possibilistic Multivariate Fuzzy c-Means Clustering Algorithm
    Himmelspach, Ludmila
    Conrad, Stefan
    [J]. SCALABLE UNCERTAINTY MANAGEMENT, SUM 2016, 2016, 9858 : 338 - 344
  • [50] FCM - THE FUZZY C-MEANS CLUSTERING-ALGORITHM
    BEZDEK, JC
    EHRLICH, R
    FULL, W
    [J]. COMPUTERS & GEOSCIENCES, 1984, 10 (2-3) : 191 - 203