Unsupervised Multiview Fuzzy C-Means Clustering Algorithm

被引:4
|
作者
Hussain, Ishtiaq [1 ]
Sinaga, Kristina P. [1 ]
Yang, Miin-Shen [1 ]
机构
[1] Chung Yuan Christian Univ, Dept Appl Math, Chungli 32023, Taoyuan, Taiwan
关键词
clustering; fuzzy c-means (FCM); multiview FCM (MV-FCM); unsupervised multiview FCM (U-MV-FCM); number of clusters; MATRIX;
D O I
10.3390/electronics12214467
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The rapid development in information technology makes it easier to collect vast numbers of data through the cloud, internet and other sources of information. Multiview clustering is a significant way for clustering multiview data that may come from multiple ways. The fuzzy c-means (FCM) algorithm for clustering (single-view) datasets was extended to process multiview datasets in the literature, called the multiview FCM (MV-FCM). However, most of the MV-FCM clustering algorithms and their extensions in the literature need prior information about the number of clusters and are also highly influenced by initializations. In this paper, we propose a novel MV-FCM clustering algorithm with an unsupervised learning framework, called the unsupervised MV-FCM (U-MV-FCM), such that it can search an optimal number of clusters during the iteration process of the algorithm without giving the number of clusters a priori. It is also free of initializations and parameter selection. We then use three synthetic and six benchmark datasets to make comparisons between the proposed U-MV-FCM and other existing algorithms and to highlight its practical implications. The experimental results show that our proposed U-MV-FCM algorithm is superior and more useful for clustering multiview datasets.
引用
收藏
页数:30
相关论文
共 50 条
  • [1] An Efficient Federated Multiview Fuzzy C-Means Clustering Method
    Hu, Xingchen
    Qin, Jindong
    Shen, Yinghua
    Pedrycz, Witold
    Liu, Xinwang
    Liu, Jiyuan
    [J]. IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2024, 32 (04) : 1886 - 1899
  • [2] A possibilistic fuzzy c-means clustering algorithm
    Pal, NR
    Pal, K
    Keller, JM
    Bezdek, JC
    [J]. IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2005, 13 (04) : 517 - 530
  • [3] An efficient Fuzzy C-Means clustering algorithm
    Hung, MC
    Yang, DL
    [J]. 2001 IEEE INTERNATIONAL CONFERENCE ON DATA MINING, PROCEEDINGS, 2001, : 225 - 232
  • [4] An Improved Fuzzy C-means Clustering Algorithm
    Duan, Lingzi
    Yu, Fusheng
    Zhan, Li
    [J]. 2016 12TH INTERNATIONAL CONFERENCE ON NATURAL COMPUTATION, FUZZY SYSTEMS AND KNOWLEDGE DISCOVERY (ICNC-FSKD), 2016, : 1199 - 1204
  • [5] A novel fuzzy C-means clustering algorithm
    Li, Cuixia
    Yu, Jian
    [J]. ROUGH SETS AND KNOWLEDGE TECHNOLOGY, PROCEEDINGS, 2006, 4062 : 510 - 515
  • [6] The global Fuzzy C-Means clustering algorithm
    Wang, Weina
    Zhang, Yunjie
    Li, Yi
    Zhang, Xiaona
    [J]. WCICA 2006: SIXTH WORLD CONGRESS ON INTELLIGENT CONTROL AND AUTOMATION, VOLS 1-12, CONFERENCE PROCEEDINGS, 2006, : 3604 - +
  • [7] An Accelerated Fuzzy C-Means clustering algorithm
    Hershfinkel, D
    Dinstein, I
    [J]. APPLICATIONS OF FUZZY LOGIC TECHNOLOGY III, 1996, 2761 : 41 - 52
  • [8] Suppressed fuzzy C-means clustering algorithm
    Fan, JL
    Zhen, WZ
    Xie, WX
    [J]. PATTERN RECOGNITION LETTERS, 2003, 24 (9-10) : 1607 - 1612
  • [9] Soil clustering by fuzzy c-means algorithm
    Goktepe, AB
    Altun, S
    Sezer, A
    [J]. ADVANCES IN ENGINEERING SOFTWARE, 2005, 36 (10) : 691 - 698
  • [10] A Fully-Unsupervised Possibilistic C-Means Clustering Algorithm
    Yang, Miin-Shen
    Chang-Chien, Shou-Jen
    Nataliani, Yessica
    [J]. IEEE ACCESS, 2018, 6 : 78308 - 78320